| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abelth.1 |
|- ( ph -> A : NN0 --> CC ) |
| 2 |
|
abelth.2 |
|- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
| 3 |
|
abelth.3 |
|- ( ph -> M e. RR ) |
| 4 |
|
abelth.4 |
|- ( ph -> 0 <_ M ) |
| 5 |
|
abelth.5 |
|- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
| 6 |
|
abelth.6 |
|- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
| 7 |
|
0nn0 |
|- 0 e. NN0 |
| 8 |
7
|
a1i |
|- ( k e. NN0 -> 0 e. NN0 ) |
| 9 |
|
ffvelcdm |
|- ( ( A : NN0 --> CC /\ 0 e. NN0 ) -> ( A ` 0 ) e. CC ) |
| 10 |
1 8 9
|
syl2an |
|- ( ( ph /\ k e. NN0 ) -> ( A ` 0 ) e. CC ) |
| 11 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 12 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 13 |
|
eqidd |
|- ( ( ph /\ m e. NN0 ) -> ( A ` m ) = ( A ` m ) ) |
| 14 |
1
|
ffvelcdmda |
|- ( ( ph /\ m e. NN0 ) -> ( A ` m ) e. CC ) |
| 15 |
11 12 13 14 2
|
isumcl |
|- ( ph -> sum_ m e. NN0 ( A ` m ) e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> sum_ m e. NN0 ( A ` m ) e. CC ) |
| 17 |
10 16
|
subcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. CC ) |
| 18 |
1
|
ffvelcdmda |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 19 |
17 18
|
ifcld |
|- ( ( ph /\ k e. NN0 ) -> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) e. CC ) |
| 20 |
19
|
fmpttd |
|- ( ph -> ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) : NN0 --> CC ) |
| 21 |
7
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 22 |
20
|
ffvelcdmda |
|- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) e. CC ) |
| 23 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 24 |
|
1z |
|- 1 e. ZZ |
| 25 |
23 24
|
eqeltrri |
|- ( 0 + 1 ) e. ZZ |
| 26 |
25
|
a1i |
|- ( ph -> ( 0 + 1 ) e. ZZ ) |
| 27 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 28 |
23
|
fveq2i |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 29 |
27 28
|
eqtri |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 30 |
29
|
eleq2i |
|- ( i e. NN <-> i e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 31 |
|
nnnn0 |
|- ( i e. NN -> i e. NN0 ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ i e. NN ) -> i e. NN0 ) |
| 33 |
|
eqeq1 |
|- ( k = i -> ( k = 0 <-> i = 0 ) ) |
| 34 |
|
fveq2 |
|- ( k = i -> ( A ` k ) = ( A ` i ) ) |
| 35 |
33 34
|
ifbieq2d |
|- ( k = i -> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 36 |
|
eqid |
|- ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) |
| 37 |
|
ovex |
|- ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. _V |
| 38 |
|
fvex |
|- ( A ` i ) e. _V |
| 39 |
37 38
|
ifex |
|- if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) e. _V |
| 40 |
35 36 39
|
fvmpt |
|- ( i e. NN0 -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 41 |
32 40
|
syl |
|- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 42 |
|
nnne0 |
|- ( i e. NN -> i =/= 0 ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ i e. NN ) -> i =/= 0 ) |
| 44 |
43
|
neneqd |
|- ( ( ph /\ i e. NN ) -> -. i = 0 ) |
| 45 |
44
|
iffalsed |
|- ( ( ph /\ i e. NN ) -> if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) = ( A ` i ) ) |
| 46 |
41 45
|
eqtrd |
|- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = ( A ` i ) ) |
| 47 |
30 46
|
sylan2br |
|- ( ( ph /\ i e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = ( A ` i ) ) |
| 48 |
26 47
|
seqfeq |
|- ( ph -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) = seq ( 0 + 1 ) ( + , A ) ) |
| 49 |
11 12 13 14 2
|
isumclim2 |
|- ( ph -> seq 0 ( + , A ) ~~> sum_ m e. NN0 ( A ` m ) ) |
| 50 |
11 21 18 49
|
clim2ser |
|- ( ph -> seq ( 0 + 1 ) ( + , A ) ~~> ( sum_ m e. NN0 ( A ` m ) - ( seq 0 ( + , A ) ` 0 ) ) ) |
| 51 |
|
0z |
|- 0 e. ZZ |
| 52 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( + , A ) ` 0 ) = ( A ` 0 ) ) |
| 53 |
51 52
|
ax-mp |
|- ( seq 0 ( + , A ) ` 0 ) = ( A ` 0 ) |
| 54 |
53
|
oveq2i |
|- ( sum_ m e. NN0 ( A ` m ) - ( seq 0 ( + , A ) ` 0 ) ) = ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) |
| 55 |
50 54
|
breqtrdi |
|- ( ph -> seq ( 0 + 1 ) ( + , A ) ~~> ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) ) |
| 56 |
48 55
|
eqbrtrd |
|- ( ph -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) ) |
| 57 |
11 21 22 56
|
clim2ser2 |
|- ( ph -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) ) ) |
| 58 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` 0 ) ) |
| 59 |
51 58
|
ax-mp |
|- ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` 0 ) |
| 60 |
|
iftrue |
|- ( k = 0 -> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 61 |
60 36 37
|
fvmpt |
|- ( 0 e. NN0 -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` 0 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 62 |
7 61
|
ax-mp |
|- ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` 0 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) |
| 63 |
59 62
|
eqtri |
|- ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) |
| 64 |
63
|
oveq2i |
|- ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) ) = ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 65 |
1 7 9
|
sylancl |
|- ( ph -> ( A ` 0 ) e. CC ) |
| 66 |
|
npncan2 |
|- ( ( sum_ m e. NN0 ( A ` m ) e. CC /\ ( A ` 0 ) e. CC ) -> ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) = 0 ) |
| 67 |
15 65 66
|
syl2anc |
|- ( ph -> ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) = 0 ) |
| 68 |
64 67
|
eqtrid |
|- ( ph -> ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) ) = 0 ) |
| 69 |
57 68
|
breqtrd |
|- ( ph -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> 0 ) |
| 70 |
|
seqex |
|- seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) e. _V |
| 71 |
|
c0ex |
|- 0 e. _V |
| 72 |
70 71
|
breldm |
|- ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> 0 -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) e. dom ~~> ) |
| 73 |
69 72
|
syl |
|- ( ph -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) e. dom ~~> ) |
| 74 |
|
eqid |
|- ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) = ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) |
| 75 |
20 73 3 4 5 74 69
|
abelthlem8 |
|- ( ( ph /\ R e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) ) |
| 76 |
1 2 3 4 5
|
abelthlem2 |
|- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 77 |
76
|
simpld |
|- ( ph -> 1 e. S ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ y e. S ) -> 1 e. S ) |
| 79 |
40
|
adantl |
|- ( ( x = 1 /\ i e. NN0 ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 80 |
|
oveq1 |
|- ( x = 1 -> ( x ^ i ) = ( 1 ^ i ) ) |
| 81 |
|
nn0z |
|- ( i e. NN0 -> i e. ZZ ) |
| 82 |
|
1exp |
|- ( i e. ZZ -> ( 1 ^ i ) = 1 ) |
| 83 |
81 82
|
syl |
|- ( i e. NN0 -> ( 1 ^ i ) = 1 ) |
| 84 |
80 83
|
sylan9eq |
|- ( ( x = 1 /\ i e. NN0 ) -> ( x ^ i ) = 1 ) |
| 85 |
79 84
|
oveq12d |
|- ( ( x = 1 /\ i e. NN0 ) -> ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 86 |
85
|
sumeq2dv |
|- ( x = 1 -> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 87 |
|
sumex |
|- sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) e. _V |
| 88 |
86 74 87
|
fvmpt |
|- ( 1 e. S -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 89 |
78 88
|
syl |
|- ( ( ph /\ y e. S ) -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 90 |
|
0zd |
|- ( ( ph /\ y e. S ) -> 0 e. ZZ ) |
| 91 |
40
|
adantl |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 92 |
65 15
|
subcld |
|- ( ph -> ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. CC ) |
| 93 |
92
|
ad2antrr |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. CC ) |
| 94 |
1
|
ffvelcdmda |
|- ( ( ph /\ i e. NN0 ) -> ( A ` i ) e. CC ) |
| 95 |
94
|
adantlr |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( A ` i ) e. CC ) |
| 96 |
93 95
|
ifcld |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) e. CC ) |
| 97 |
96
|
mulridd |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 98 |
91 97
|
eqtr4d |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 99 |
97 96
|
eqeltrd |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) e. CC ) |
| 100 |
|
oveq1 |
|- ( x = 1 -> ( x ^ n ) = ( 1 ^ n ) ) |
| 101 |
|
nn0z |
|- ( n e. NN0 -> n e. ZZ ) |
| 102 |
|
1exp |
|- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
| 103 |
101 102
|
syl |
|- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 104 |
100 103
|
sylan9eq |
|- ( ( x = 1 /\ n e. NN0 ) -> ( x ^ n ) = 1 ) |
| 105 |
104
|
oveq2d |
|- ( ( x = 1 /\ n e. NN0 ) -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` n ) x. 1 ) ) |
| 106 |
105
|
sumeq2dv |
|- ( x = 1 -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ n e. NN0 ( ( A ` n ) x. 1 ) ) |
| 107 |
|
fveq2 |
|- ( n = m -> ( A ` n ) = ( A ` m ) ) |
| 108 |
107
|
oveq1d |
|- ( n = m -> ( ( A ` n ) x. 1 ) = ( ( A ` m ) x. 1 ) ) |
| 109 |
108
|
cbvsumv |
|- sum_ n e. NN0 ( ( A ` n ) x. 1 ) = sum_ m e. NN0 ( ( A ` m ) x. 1 ) |
| 110 |
106 109
|
eqtrdi |
|- ( x = 1 -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ m e. NN0 ( ( A ` m ) x. 1 ) ) |
| 111 |
|
sumex |
|- sum_ m e. NN0 ( ( A ` m ) x. 1 ) e. _V |
| 112 |
110 6 111
|
fvmpt |
|- ( 1 e. S -> ( F ` 1 ) = sum_ m e. NN0 ( ( A ` m ) x. 1 ) ) |
| 113 |
77 112
|
syl |
|- ( ph -> ( F ` 1 ) = sum_ m e. NN0 ( ( A ` m ) x. 1 ) ) |
| 114 |
14
|
mulridd |
|- ( ( ph /\ m e. NN0 ) -> ( ( A ` m ) x. 1 ) = ( A ` m ) ) |
| 115 |
114
|
sumeq2dv |
|- ( ph -> sum_ m e. NN0 ( ( A ` m ) x. 1 ) = sum_ m e. NN0 ( A ` m ) ) |
| 116 |
113 115
|
eqtrd |
|- ( ph -> ( F ` 1 ) = sum_ m e. NN0 ( A ` m ) ) |
| 117 |
116
|
oveq1d |
|- ( ph -> ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) = ( sum_ m e. NN0 ( A ` m ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 118 |
15
|
subidd |
|- ( ph -> ( sum_ m e. NN0 ( A ` m ) - sum_ m e. NN0 ( A ` m ) ) = 0 ) |
| 119 |
117 118
|
eqtrd |
|- ( ph -> ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) = 0 ) |
| 120 |
69 119
|
breqtrrd |
|- ( ph -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 122 |
11 90 98 99 121
|
isumclim |
|- ( ( ph /\ y e. S ) -> sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) = ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 123 |
89 122
|
eqtrd |
|- ( ( ph /\ y e. S ) -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) = ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 124 |
|
oveq1 |
|- ( x = y -> ( x ^ i ) = ( y ^ i ) ) |
| 125 |
40 124
|
oveqan12rd |
|- ( ( x = y /\ i e. NN0 ) -> ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 126 |
125
|
sumeq2dv |
|- ( x = y -> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 127 |
|
sumex |
|- sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) e. _V |
| 128 |
126 74 127
|
fvmpt |
|- ( y e. S -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 129 |
128
|
adantl |
|- ( ( ph /\ y e. S ) -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 130 |
|
oveq2 |
|- ( k = i -> ( y ^ k ) = ( y ^ i ) ) |
| 131 |
35 130
|
oveq12d |
|- ( k = i -> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 132 |
|
eqid |
|- ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) = ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) |
| 133 |
|
ovex |
|- ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) e. _V |
| 134 |
131 132 133
|
fvmpt |
|- ( i e. NN0 -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 135 |
134
|
adantl |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 136 |
5
|
ssrab3 |
|- S C_ CC |
| 137 |
136
|
a1i |
|- ( ph -> S C_ CC ) |
| 138 |
137
|
sselda |
|- ( ( ph /\ y e. S ) -> y e. CC ) |
| 139 |
|
expcl |
|- ( ( y e. CC /\ i e. NN0 ) -> ( y ^ i ) e. CC ) |
| 140 |
138 139
|
sylan |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( y ^ i ) e. CC ) |
| 141 |
96 140
|
mulcld |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) e. CC ) |
| 142 |
7
|
a1i |
|- ( ( ph /\ y e. S ) -> 0 e. NN0 ) |
| 143 |
19
|
adantlr |
|- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) e. CC ) |
| 144 |
|
expcl |
|- ( ( y e. CC /\ k e. NN0 ) -> ( y ^ k ) e. CC ) |
| 145 |
138 144
|
sylan |
|- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> ( y ^ k ) e. CC ) |
| 146 |
143 145
|
mulcld |
|- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) e. CC ) |
| 147 |
146
|
fmpttd |
|- ( ( ph /\ y e. S ) -> ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) : NN0 --> CC ) |
| 148 |
147
|
ffvelcdmda |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) e. CC ) |
| 149 |
45
|
oveq1d |
|- ( ( ph /\ i e. NN ) -> ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 150 |
32 134
|
syl |
|- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 151 |
34 130
|
oveq12d |
|- ( k = i -> ( ( A ` k ) x. ( y ^ k ) ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 152 |
|
eqid |
|- ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) = ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) |
| 153 |
|
ovex |
|- ( ( A ` i ) x. ( y ^ i ) ) e. _V |
| 154 |
151 152 153
|
fvmpt |
|- ( i e. NN0 -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 155 |
32 154
|
syl |
|- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 156 |
149 150 155
|
3eqtr4d |
|- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) ) |
| 157 |
30 156
|
sylan2br |
|- ( ( ph /\ i e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) ) |
| 158 |
26 157
|
seqfeq |
|- ( ph -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) = seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ y e. S ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) = seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ) |
| 160 |
18
|
adantlr |
|- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 161 |
160 145
|
mulcld |
|- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( y ^ k ) ) e. CC ) |
| 162 |
161
|
fmpttd |
|- ( ( ph /\ y e. S ) -> ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) : NN0 --> CC ) |
| 163 |
162
|
ffvelcdmda |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) e. CC ) |
| 164 |
154
|
adantl |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 165 |
95 140
|
mulcld |
|- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( A ` i ) x. ( y ^ i ) ) e. CC ) |
| 166 |
1 2 3 4 5
|
abelthlem3 |
|- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) e. dom ~~> ) |
| 167 |
11 90 164 165 166
|
isumclim2 |
|- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ~~> sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 168 |
|
fveq2 |
|- ( n = i -> ( A ` n ) = ( A ` i ) ) |
| 169 |
|
oveq2 |
|- ( n = i -> ( x ^ n ) = ( x ^ i ) ) |
| 170 |
168 169
|
oveq12d |
|- ( n = i -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` i ) x. ( x ^ i ) ) ) |
| 171 |
170
|
cbvsumv |
|- sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ i e. NN0 ( ( A ` i ) x. ( x ^ i ) ) |
| 172 |
124
|
oveq2d |
|- ( x = y -> ( ( A ` i ) x. ( x ^ i ) ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 173 |
172
|
sumeq2sdv |
|- ( x = y -> sum_ i e. NN0 ( ( A ` i ) x. ( x ^ i ) ) = sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 174 |
171 173
|
eqtrid |
|- ( x = y -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 175 |
|
sumex |
|- sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) e. _V |
| 176 |
174 6 175
|
fvmpt |
|- ( y e. S -> ( F ` y ) = sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 177 |
176
|
adantl |
|- ( ( ph /\ y e. S ) -> ( F ` y ) = sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 178 |
167 177
|
breqtrrd |
|- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ~~> ( F ` y ) ) |
| 179 |
11 142 163 178
|
clim2ser |
|- ( ( ph /\ y e. S ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ~~> ( ( F ` y ) - ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) ) ) |
| 180 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` 0 ) ) |
| 181 |
51 180
|
ax-mp |
|- ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` 0 ) |
| 182 |
|
fveq2 |
|- ( k = 0 -> ( A ` k ) = ( A ` 0 ) ) |
| 183 |
|
oveq2 |
|- ( k = 0 -> ( y ^ k ) = ( y ^ 0 ) ) |
| 184 |
182 183
|
oveq12d |
|- ( k = 0 -> ( ( A ` k ) x. ( y ^ k ) ) = ( ( A ` 0 ) x. ( y ^ 0 ) ) ) |
| 185 |
|
ovex |
|- ( ( A ` 0 ) x. ( y ^ 0 ) ) e. _V |
| 186 |
184 152 185
|
fvmpt |
|- ( 0 e. NN0 -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` 0 ) = ( ( A ` 0 ) x. ( y ^ 0 ) ) ) |
| 187 |
7 186
|
ax-mp |
|- ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` 0 ) = ( ( A ` 0 ) x. ( y ^ 0 ) ) |
| 188 |
181 187
|
eqtri |
|- ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( A ` 0 ) x. ( y ^ 0 ) ) |
| 189 |
138
|
exp0d |
|- ( ( ph /\ y e. S ) -> ( y ^ 0 ) = 1 ) |
| 190 |
189
|
oveq2d |
|- ( ( ph /\ y e. S ) -> ( ( A ` 0 ) x. ( y ^ 0 ) ) = ( ( A ` 0 ) x. 1 ) ) |
| 191 |
65
|
adantr |
|- ( ( ph /\ y e. S ) -> ( A ` 0 ) e. CC ) |
| 192 |
191
|
mulridd |
|- ( ( ph /\ y e. S ) -> ( ( A ` 0 ) x. 1 ) = ( A ` 0 ) ) |
| 193 |
190 192
|
eqtrd |
|- ( ( ph /\ y e. S ) -> ( ( A ` 0 ) x. ( y ^ 0 ) ) = ( A ` 0 ) ) |
| 194 |
188 193
|
eqtrid |
|- ( ( ph /\ y e. S ) -> ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) = ( A ` 0 ) ) |
| 195 |
194
|
oveq2d |
|- ( ( ph /\ y e. S ) -> ( ( F ` y ) - ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) ) = ( ( F ` y ) - ( A ` 0 ) ) ) |
| 196 |
179 195
|
breqtrd |
|- ( ( ph /\ y e. S ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ~~> ( ( F ` y ) - ( A ` 0 ) ) ) |
| 197 |
159 196
|
eqbrtrd |
|- ( ( ph /\ y e. S ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ~~> ( ( F ` y ) - ( A ` 0 ) ) ) |
| 198 |
11 142 148 197
|
clim2ser2 |
|- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ~~> ( ( ( F ` y ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) ) ) |
| 199 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` 0 ) ) |
| 200 |
51 199
|
ax-mp |
|- ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` 0 ) |
| 201 |
60 183
|
oveq12d |
|- ( k = 0 -> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) ) |
| 202 |
|
ovex |
|- ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) e. _V |
| 203 |
201 132 202
|
fvmpt |
|- ( 0 e. NN0 -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` 0 ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) ) |
| 204 |
7 203
|
ax-mp |
|- ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` 0 ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) |
| 205 |
200 204
|
eqtri |
|- ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) |
| 206 |
189
|
oveq2d |
|- ( ( ph /\ y e. S ) -> ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. 1 ) ) |
| 207 |
15
|
adantr |
|- ( ( ph /\ y e. S ) -> sum_ m e. NN0 ( A ` m ) e. CC ) |
| 208 |
191 207
|
subcld |
|- ( ( ph /\ y e. S ) -> ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. CC ) |
| 209 |
208
|
mulridd |
|- ( ( ph /\ y e. S ) -> ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. 1 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 210 |
206 209
|
eqtrd |
|- ( ( ph /\ y e. S ) -> ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 211 |
205 210
|
eqtrid |
|- ( ( ph /\ y e. S ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 212 |
211
|
oveq2d |
|- ( ( ph /\ y e. S ) -> ( ( ( F ` y ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) ) = ( ( ( F ` y ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) ) |
| 213 |
1 2 3 4 5 6
|
abelthlem4 |
|- ( ph -> F : S --> CC ) |
| 214 |
213
|
ffvelcdmda |
|- ( ( ph /\ y e. S ) -> ( F ` y ) e. CC ) |
| 215 |
214 191 207
|
npncand |
|- ( ( ph /\ y e. S ) -> ( ( ( F ` y ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) = ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 216 |
212 215
|
eqtrd |
|- ( ( ph /\ y e. S ) -> ( ( ( F ` y ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) ) = ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 217 |
198 216
|
breqtrd |
|- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ~~> ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 218 |
11 90 135 141 217
|
isumclim |
|- ( ( ph /\ y e. S ) -> sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) = ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 219 |
129 218
|
eqtrd |
|- ( ( ph /\ y e. S ) -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) = ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 220 |
123 219
|
oveq12d |
|- ( ( ph /\ y e. S ) -> ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) = ( ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) - ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) ) |
| 221 |
213
|
adantr |
|- ( ( ph /\ y e. S ) -> F : S --> CC ) |
| 222 |
221 78
|
ffvelcdmd |
|- ( ( ph /\ y e. S ) -> ( F ` 1 ) e. CC ) |
| 223 |
222 214 207
|
nnncan2d |
|- ( ( ph /\ y e. S ) -> ( ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) - ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) = ( ( F ` 1 ) - ( F ` y ) ) ) |
| 224 |
220 223
|
eqtrd |
|- ( ( ph /\ y e. S ) -> ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) = ( ( F ` 1 ) - ( F ` y ) ) ) |
| 225 |
224
|
fveq2d |
|- ( ( ph /\ y e. S ) -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) = ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) ) |
| 226 |
225
|
breq1d |
|- ( ( ph /\ y e. S ) -> ( ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R <-> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |
| 227 |
226
|
imbi2d |
|- ( ( ph /\ y e. S ) -> ( ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) <-> ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) ) |
| 228 |
227
|
ralbidva |
|- ( ph -> ( A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) <-> A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) ) |
| 229 |
228
|
rexbidv |
|- ( ph -> ( E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) <-> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) ) |
| 230 |
229
|
adantr |
|- ( ( ph /\ R e. RR+ ) -> ( E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) <-> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) ) |
| 231 |
75 230
|
mpbid |
|- ( ( ph /\ R e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |