Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
6 |
|
abelth.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
7 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 0 ∈ ℕ0 ) |
9 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
10 |
1 8 9
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
11 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
12 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
13 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑚 ) ) |
14 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
15 |
11 12 13 14 2
|
isumcl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
17 |
10 16
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ ℂ ) |
18 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
19 |
17 18
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
20 |
19
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
21 |
7
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
22 |
20
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
23 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
24 |
|
1z |
⊢ 1 ∈ ℤ |
25 |
23 24
|
eqeltrri |
⊢ ( 0 + 1 ) ∈ ℤ |
26 |
25
|
a1i |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℤ ) |
27 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
28 |
23
|
fveq2i |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
29 |
27 28
|
eqtri |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
30 |
29
|
eleq2i |
⊢ ( 𝑖 ∈ ℕ ↔ 𝑖 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
31 |
|
nnnn0 |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℕ0 ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ0 ) |
33 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 = 0 ↔ 𝑖 = 0 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑖 ) ) |
35 |
33 34
|
ifbieq2d |
⊢ ( 𝑘 = 𝑖 → if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
36 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) |
37 |
|
ovex |
⊢ ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ V |
38 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑖 ) ∈ V |
39 |
37 38
|
ifex |
⊢ if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ∈ V |
40 |
35 36 39
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
41 |
32 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
42 |
|
nnne0 |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ≠ 0 ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ≠ 0 ) |
44 |
43
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ¬ 𝑖 = 0 ) |
45 |
44
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) = ( 𝐴 ‘ 𝑖 ) ) |
46 |
41 45
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
47 |
30 46
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) |
48 |
26 47
|
seqfeq |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) = seq ( 0 + 1 ) ( + , 𝐴 ) ) |
49 |
11 12 13 14 2
|
isumclim2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
50 |
11 21 18 49
|
clim2ser |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , 𝐴 ) ⇝ ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( seq 0 ( + , 𝐴 ) ‘ 0 ) ) ) |
51 |
|
0z |
⊢ 0 ∈ ℤ |
52 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( + , 𝐴 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
53 |
51 52
|
ax-mp |
⊢ ( seq 0 ( + , 𝐴 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) |
54 |
53
|
oveq2i |
⊢ ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( seq 0 ( + , 𝐴 ) ‘ 0 ) ) = ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) |
55 |
50 54
|
breqtrdi |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , 𝐴 ) ⇝ ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) ) |
56 |
48 55
|
eqbrtrd |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) ) |
57 |
11 21 22 56
|
clim2ser2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
58 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) ) |
59 |
51 58
|
ax-mp |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) |
60 |
|
iftrue |
⊢ ( 𝑘 = 0 → if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
61 |
60 36 37
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
62 |
7 61
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
63 |
59 62
|
eqtri |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
64 |
63
|
oveq2i |
⊢ ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
65 |
1 7 9
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
66 |
|
npncan2 |
⊢ ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ∈ ℂ ∧ ( 𝐴 ‘ 0 ) ∈ ℂ ) → ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) = 0 ) |
67 |
15 65 66
|
syl2anc |
⊢ ( 𝜑 → ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) = 0 ) |
68 |
64 67
|
syl5eq |
⊢ ( 𝜑 → ( ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ‘ 0 ) ) = 0 ) |
69 |
57 68
|
breqtrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ 0 ) |
70 |
|
seqex |
⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ∈ V |
71 |
|
c0ex |
⊢ 0 ∈ V |
72 |
70 71
|
breldm |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ 0 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
73 |
69 72
|
syl |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
74 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) |
75 |
20 73 3 4 5 74 69
|
abelthlem8 |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ) |
76 |
1 2 3 4 5
|
abelthlem2 |
⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
77 |
76
|
simpld |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 1 ∈ 𝑆 ) |
79 |
40
|
adantl |
⊢ ( ( 𝑥 = 1 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
80 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 𝑖 ) = ( 1 ↑ 𝑖 ) ) |
81 |
|
nn0z |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℤ ) |
82 |
|
1exp |
⊢ ( 𝑖 ∈ ℤ → ( 1 ↑ 𝑖 ) = 1 ) |
83 |
81 82
|
syl |
⊢ ( 𝑖 ∈ ℕ0 → ( 1 ↑ 𝑖 ) = 1 ) |
84 |
80 83
|
sylan9eq |
⊢ ( ( 𝑥 = 1 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑖 ) = 1 ) |
85 |
79 84
|
oveq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑖 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
86 |
85
|
sumeq2dv |
⊢ ( 𝑥 = 1 → Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
87 |
|
sumex |
⊢ Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ∈ V |
88 |
86 74 87
|
fvmpt |
⊢ ( 1 ∈ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
89 |
78 88
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
90 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℤ ) |
91 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
92 |
65 15
|
subcld |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ ℂ ) |
93 |
92
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ ℂ ) |
94 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
95 |
94
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
96 |
93 95
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ∈ ℂ ) |
97 |
96
|
mulid1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) = if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) ) |
98 |
91 97
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ) |
99 |
97 96
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) ∈ ℂ ) |
100 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) |
101 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
102 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
103 |
101 102
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
104 |
100 103
|
sylan9eq |
⊢ ( ( 𝑥 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑛 ) = 1 ) |
105 |
104
|
oveq2d |
⊢ ( ( 𝑥 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
106 |
105
|
sumeq2dv |
⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
107 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑚 ) ) |
108 |
107
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( ( 𝐴 ‘ 𝑚 ) · 1 ) ) |
109 |
108
|
cbvsumv |
⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) |
110 |
106 109
|
eqtrdi |
⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) ) |
111 |
|
sumex |
⊢ Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) ∈ V |
112 |
110 6 111
|
fvmpt |
⊢ ( 1 ∈ 𝑆 → ( 𝐹 ‘ 1 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) ) |
113 |
77 112
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) ) |
114 |
14
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑚 ) · 1 ) = ( 𝐴 ‘ 𝑚 ) ) |
115 |
114
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ0 ( ( 𝐴 ‘ 𝑚 ) · 1 ) = Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
116 |
113 115
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) |
117 |
116
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) = ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
118 |
15
|
subidd |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) = 0 ) |
119 |
117 118
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) = 0 ) |
120 |
69 119
|
breqtrrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
122 |
11 90 98 99 121
|
isumclim |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · 1 ) = ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
123 |
89 122
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) = ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
124 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝑖 ) = ( 𝑦 ↑ 𝑖 ) ) |
125 |
40 124
|
oveqan12rd |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝑖 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
126 |
125
|
sumeq2dv |
⊢ ( 𝑥 = 𝑦 → Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
127 |
|
sumex |
⊢ Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ∈ V |
128 |
126 74 127
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
129 |
128
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) = Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
130 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑦 ↑ 𝑘 ) = ( 𝑦 ↑ 𝑖 ) ) |
131 |
35 130
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
132 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) |
133 |
|
ovex |
⊢ ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ∈ V |
134 |
131 132 133
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
135 |
134
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
136 |
5
|
ssrab3 |
⊢ 𝑆 ⊆ ℂ |
137 |
136
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
138 |
137
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ℂ ) |
139 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
140 |
138 139
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑖 ) ∈ ℂ ) |
141 |
96 140
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ∈ ℂ ) |
142 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ℕ0 ) |
143 |
19
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
144 |
|
expcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
145 |
138 144
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑦 ↑ 𝑘 ) ∈ ℂ ) |
146 |
143 145
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ∈ ℂ ) |
147 |
146
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
148 |
147
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
149 |
45
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
150 |
32 134
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) ) |
151 |
34 130
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
152 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) |
153 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ∈ V |
154 |
151 152 153
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
155 |
32 154
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
156 |
149 150 155
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) |
157 |
30 156
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) |
158 |
26 157
|
seqfeq |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) = seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) = seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ) |
160 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
161 |
160 145
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ∈ ℂ ) |
162 |
161
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) |
163 |
162
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
164 |
154
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
165 |
95 140
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ∈ ℂ ) |
166 |
1 2 3 4 5
|
abelthlem3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
167 |
11 90 164 165 166
|
isumclim2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
168 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑖 ) ) |
169 |
|
oveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑖 ) ) |
170 |
168 169
|
oveq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) |
171 |
170
|
cbvsumv |
⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) |
172 |
124
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
173 |
172
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑦 → Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
174 |
171 173
|
syl5eq |
⊢ ( 𝑥 = 𝑦 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
175 |
|
sumex |
⊢ Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ∈ V |
176 |
174 6 175
|
fvmpt |
⊢ ( 𝑦 ∈ 𝑆 → ( 𝐹 ‘ 𝑦 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
177 |
176
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) = Σ 𝑖 ∈ ℕ0 ( ( 𝐴 ‘ 𝑖 ) · ( 𝑦 ↑ 𝑖 ) ) ) |
178 |
167 177
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
179 |
11 142 163 178
|
clim2ser |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) − ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
180 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) ) |
181 |
51 180
|
ax-mp |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) |
182 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 0 ) ) |
183 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑦 ↑ 𝑘 ) = ( 𝑦 ↑ 0 ) ) |
184 |
182 183
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) ) |
185 |
|
ovex |
⊢ ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) ∈ V |
186 |
184 152 185
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) ) |
187 |
7 186
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) |
188 |
181 187
|
eqtri |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) |
189 |
138
|
exp0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ↑ 0 ) = 1 ) |
190 |
189
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) = ( ( 𝐴 ‘ 0 ) · 1 ) ) |
191 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
192 |
191
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 0 ) · 1 ) = ( 𝐴 ‘ 0 ) ) |
193 |
190 192
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 0 ) · ( 𝑦 ↑ 0 ) ) = ( 𝐴 ‘ 0 ) ) |
194 |
188 193
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
195 |
194
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑦 ) − ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) ) |
196 |
179 195
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) ) |
197 |
159 196
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) ) |
198 |
11 142 148 197
|
clim2ser2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
199 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) ) |
200 |
51 199
|
ax-mp |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) |
201 |
60 183
|
oveq12d |
⊢ ( 𝑘 = 0 → ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) ) |
202 |
|
ovex |
⊢ ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) ∈ V |
203 |
201 132 202
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) ) |
204 |
7 203
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ‘ 0 ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) |
205 |
200 204
|
eqtri |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) |
206 |
189
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) = ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · 1 ) ) |
207 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
208 |
191 207
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ∈ ℂ ) |
209 |
208
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · 1 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
210 |
206 209
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) · ( 𝑦 ↑ 0 ) ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
211 |
205 210
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
212 |
211
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) ) |
213 |
1 2 3 4 5 6
|
abelthlem4 |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
214 |
213
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
215 |
214 191 207
|
npncand |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
216 |
212 215
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐴 ‘ 0 ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
217 |
198 216
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) · ( 𝑦 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
218 |
11 90 135 141 217
|
isumclim |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → Σ 𝑖 ∈ ℕ0 ( if ( 𝑖 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑖 ) ) · ( 𝑦 ↑ 𝑖 ) ) = ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
219 |
129 218
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) |
220 |
123 219
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) = ( ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) − ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) ) |
221 |
213
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → 𝐹 : 𝑆 ⟶ ℂ ) |
222 |
221 78
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 1 ) ∈ ℂ ) |
223 |
222 214 207
|
nnncan2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 1 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) − ( ( 𝐹 ‘ 𝑦 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) ) = ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
224 |
220 223
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
225 |
224
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
226 |
225
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ↔ ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
227 |
226
|
imbi2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ↔ ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) ) |
228 |
227
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) ) |
229 |
228
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) ) |
230 |
229
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 1 ) − ( ( 𝑥 ∈ 𝑆 ↦ Σ 𝑖 ∈ ℕ0 ( ( ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( 𝐴 ‘ 0 ) − Σ 𝑚 ∈ ℕ0 ( 𝐴 ‘ 𝑚 ) ) , ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑖 ) · ( 𝑥 ↑ 𝑖 ) ) ) ‘ 𝑦 ) ) ) < 𝑅 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) ) |
231 |
75 230
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |