| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
| 3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
| 6 |
|
abelth.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 7 |
|
abelth.7 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
| 8 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 9 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → 0 ∈ ℤ ) |
| 10 |
|
id |
⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ+ ) |
| 11 |
3 4
|
ge0p1rpd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ+ ) |
| 12 |
|
rpdivcl |
⊢ ( ( 𝑅 ∈ ℝ+ ∧ ( 𝑀 + 1 ) ∈ ℝ+ ) → ( 𝑅 / ( 𝑀 + 1 ) ) ∈ ℝ+ ) |
| 13 |
10 11 12
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑅 / ( 𝑀 + 1 ) ) ∈ ℝ+ ) |
| 14 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) |
| 15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
| 16 |
8 9 13 14 15
|
climi0 |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) |
| 17 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ( 𝑅 / ( 𝑀 + 1 ) ) ∈ ℝ+ ) |
| 18 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝑗 − 1 ) ) ∈ Fin ) |
| 19 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 20 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑤 ) ∈ ℂ ) |
| 21 |
8 19 20
|
serf |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 22 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) → 𝑖 ∈ ℕ0 ) |
| 23 |
|
ffvelcdm |
⊢ ( ( seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
| 24 |
21 22 23
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
| 25 |
24
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 26 |
18 25
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 28 |
24
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ) → 0 ≤ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ) |
| 29 |
18 25 28
|
fsumge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → 0 ≤ Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ) |
| 31 |
27 30
|
ge0p1rpd |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ∈ ℝ+ ) |
| 32 |
17 31
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ∈ ℝ+ ) |
| 33 |
1 2 3 4 5
|
abelthlem2 |
⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 34 |
33
|
simpld |
⊢ ( 𝜑 → 1 ∈ 𝑆 ) |
| 35 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) ) |
| 36 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
| 37 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
| 38 |
36 37
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 39 |
35 38
|
sylan9eq |
⊢ ( ( 𝑥 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑛 ) = 1 ) |
| 40 |
39
|
oveq2d |
⊢ ( ( 𝑥 = 1 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 41 |
40
|
sumeq2dv |
⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 42 |
|
sumex |
⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ∈ V |
| 43 |
41 6 42
|
fvmpt |
⊢ ( 1 ∈ 𝑆 → ( 𝐹 ‘ 1 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 44 |
34 43
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 45 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 46 |
45
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 47 |
46
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · 1 ) ) |
| 48 |
46 45
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · 1 ) ∈ ℂ ) |
| 49 |
8 19 47 48 7
|
isumclim |
⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · 1 ) = 0 ) |
| 50 |
44 49
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 0 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 1 ) = 0 ) |
| 52 |
51
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) = ( 0 − ( 𝐹 ‘ 𝑦 ) ) ) |
| 53 |
|
df-neg |
⊢ - ( 𝐹 ‘ 𝑦 ) = ( 0 − ( 𝐹 ‘ 𝑦 ) ) |
| 54 |
52 53
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 55 |
54
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ - ( 𝐹 ‘ 𝑦 ) ) ) |
| 56 |
1 2 3 4 5 6
|
abelthlem4 |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 57 |
56
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 58 |
57
|
absnegd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ - ( 𝐹 ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 59 |
55 58
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 60 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝑆 ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 61 |
60
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑦 = 1 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 1 ) ) |
| 63 |
62 50
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = 1 ) → ( 𝐹 ‘ 𝑦 ) = 0 ) |
| 64 |
63
|
abs00bd |
⊢ ( ( 𝜑 ∧ 𝑦 = 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 65 |
64
|
ad5ant15 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) ∧ 𝑦 = 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) = 0 ) |
| 66 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → 𝑅 ∈ ℝ+ ) |
| 67 |
66
|
rpgt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → 0 < 𝑅 ) |
| 68 |
67
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) ∧ 𝑦 = 1 ) → 0 < 𝑅 ) |
| 69 |
65 68
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) ∧ 𝑦 = 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < 𝑅 ) |
| 70 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 71 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
| 72 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑀 ∈ ℝ ) |
| 73 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 0 ≤ 𝑀 ) |
| 74 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
| 75 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑦 ∈ 𝑆 ) |
| 76 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑦 ≠ 1 ) |
| 77 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ↔ ( 𝑦 ∈ 𝑆 ∧ 𝑦 ≠ 1 ) ) |
| 78 |
75 76 77
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑦 ∈ ( 𝑆 ∖ { 1 } ) ) |
| 79 |
13
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( 𝑅 / ( 𝑀 + 1 ) ) ∈ ℝ+ ) |
| 80 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → 𝑗 ∈ ℕ0 ) |
| 81 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) |
| 82 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑚 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) = ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) ) |
| 83 |
82
|
breq1d |
⊢ ( 𝑘 = 𝑚 → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ↔ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) |
| 84 |
83
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) |
| 85 |
81 84
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) |
| 86 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) |
| 87 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑛 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) = ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 88 |
87
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) = Σ 𝑛 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) |
| 89 |
88
|
oveq1i |
⊢ ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) = ( Σ 𝑛 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) |
| 90 |
89
|
oveq2i |
⊢ ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) = ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑛 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) |
| 91 |
86 90
|
breqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑛 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) |
| 92 |
70 71 72 73 5 6 74 78 79 80 85 91
|
abelthlem7 |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < ( ( 𝑀 + 1 ) · ( 𝑅 / ( 𝑀 + 1 ) ) ) ) |
| 93 |
|
rpcn |
⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℂ ) |
| 94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → 𝑅 ∈ ℂ ) |
| 95 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑀 + 1 ) ∈ ℝ+ ) |
| 96 |
95
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑀 + 1 ) ∈ ℂ ) |
| 97 |
95
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑀 + 1 ) ≠ 0 ) |
| 98 |
94 96 97
|
divcan2d |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝑀 + 1 ) · ( 𝑅 / ( 𝑀 + 1 ) ) ) = 𝑅 ) |
| 99 |
98
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( ( 𝑀 + 1 ) · ( 𝑅 / ( 𝑀 + 1 ) ) ) = 𝑅 ) |
| 100 |
92 99
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ∧ 𝑦 ≠ 1 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < 𝑅 ) |
| 101 |
100
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) ∧ 𝑦 ≠ 1 ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < 𝑅 ) |
| 102 |
69 101
|
pm2.61dane |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) < 𝑅 ) |
| 103 |
61 102
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) |
| 104 |
103
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 105 |
104
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 106 |
|
breq2 |
⊢ ( 𝑤 = ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) → ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 ↔ ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ) ) |
| 107 |
106
|
rspceaimv |
⊢ ( ( ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < ( ( 𝑅 / ( 𝑀 + 1 ) ) / ( Σ 𝑖 ∈ ( 0 ... ( 𝑗 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) + 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 108 |
32 105 107
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < ( 𝑅 / ( 𝑀 + 1 ) ) ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |
| 109 |
16 108
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑦 ∈ 𝑆 ( ( abs ‘ ( 1 − 𝑦 ) ) < 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 1 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑅 ) ) |