| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|- _i e. CC |
| 2 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) |
| 3 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 4 |
1 2 3
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. A ) e. CC ) |
| 5 |
4
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( _i x. A ) ) e. RR ) |
| 6 |
5
|
reefcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( Re ` ( _i x. A ) ) ) e. RR ) |
| 7 |
|
simpr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 8 |
|
neghalfpirx |
|- -u ( _pi / 2 ) e. RR* |
| 9 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 10 |
9
|
rexri |
|- ( _pi / 2 ) e. RR* |
| 11 |
|
elioo2 |
|- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( Re ` A ) e. RR /\ -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) ) |
| 12 |
8 10 11
|
mp2an |
|- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> ( ( Re ` A ) e. RR /\ -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 13 |
7 12
|
sylib |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( Re ` A ) e. RR /\ -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 14 |
13
|
simp1d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) e. RR ) |
| 15 |
14
|
recoscld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( Re ` A ) ) e. RR ) |
| 16 |
|
efgt0 |
|- ( ( Re ` ( _i x. A ) ) e. RR -> 0 < ( exp ` ( Re ` ( _i x. A ) ) ) ) |
| 17 |
5 16
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( exp ` ( Re ` ( _i x. A ) ) ) ) |
| 18 |
|
cosq14gt0 |
|- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( cos ` ( Re ` A ) ) ) |
| 19 |
18
|
adantl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( cos ` ( Re ` A ) ) ) |
| 20 |
6 15 17 19
|
mulgt0d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( cos ` ( Re ` A ) ) ) ) |
| 21 |
|
efeul |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) |
| 22 |
4 21
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) |
| 23 |
22
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( _i x. A ) ) ) = ( Re ` ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) ) |
| 24 |
4
|
imcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) e. RR ) |
| 25 |
24
|
recoscld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( Im ` ( _i x. A ) ) ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( Im ` ( _i x. A ) ) ) e. CC ) |
| 27 |
24
|
resincld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( Im ` ( _i x. A ) ) ) e. RR ) |
| 28 |
27
|
recnd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( Im ` ( _i x. A ) ) ) e. CC ) |
| 29 |
|
mulcl |
|- ( ( _i e. CC /\ ( sin ` ( Im ` ( _i x. A ) ) ) e. CC ) -> ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) e. CC ) |
| 30 |
1 28 29
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) e. CC ) |
| 31 |
26 30
|
addcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) e. CC ) |
| 32 |
6 31
|
remul2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) ) |
| 33 |
25 27
|
crred |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) = ( cos ` ( Im ` ( _i x. A ) ) ) ) |
| 34 |
|
imre |
|- ( ( _i x. A ) e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
| 35 |
4 34
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
| 36 |
1 1
|
mulneg1i |
|- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 37 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 38 |
37
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
| 39 |
|
negneg1e1 |
|- -u -u 1 = 1 |
| 40 |
36 38 39
|
3eqtri |
|- ( -u _i x. _i ) = 1 |
| 41 |
40
|
oveq1i |
|- ( ( -u _i x. _i ) x. A ) = ( 1 x. A ) |
| 42 |
|
negicn |
|- -u _i e. CC |
| 43 |
42
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _i e. CC ) |
| 44 |
1
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _i e. CC ) |
| 45 |
43 44 2
|
mulassd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
| 46 |
|
mullid |
|- ( A e. CC -> ( 1 x. A ) = A ) |
| 47 |
46
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 x. A ) = A ) |
| 48 |
41 45 47
|
3eqtr3a |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. ( _i x. A ) ) = A ) |
| 49 |
48
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( -u _i x. ( _i x. A ) ) ) = ( Re ` A ) ) |
| 50 |
35 49
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) = ( Re ` A ) ) |
| 51 |
50
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( Im ` ( _i x. A ) ) ) = ( cos ` ( Re ` A ) ) ) |
| 52 |
33 51
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) = ( cos ` ( Re ` A ) ) ) |
| 53 |
52
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( Re ` ( ( cos ` ( Im ` ( _i x. A ) ) ) + ( _i x. ( sin ` ( Im ` ( _i x. A ) ) ) ) ) ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( cos ` ( Re ` A ) ) ) ) |
| 54 |
23 32 53
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( Re ` ( _i x. A ) ) ) x. ( cos ` ( Re ` A ) ) ) ) |
| 55 |
20 54
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. A ) ) ) ) |