Description: Lemma for asinsin . (Contributed by Mario Carneiro, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | asinsinlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn | |
|
2 | simpl | |
|
3 | mulcl | |
|
4 | 1 2 3 | sylancr | |
5 | 4 | recld | |
6 | 5 | reefcld | |
7 | simpr | |
|
8 | neghalfpirx | |
|
9 | halfpire | |
|
10 | 9 | rexri | |
11 | elioo2 | |
|
12 | 8 10 11 | mp2an | |
13 | 7 12 | sylib | |
14 | 13 | simp1d | |
15 | 14 | recoscld | |
16 | efgt0 | |
|
17 | 5 16 | syl | |
18 | cosq14gt0 | |
|
19 | 18 | adantl | |
20 | 6 15 17 19 | mulgt0d | |
21 | efeul | |
|
22 | 4 21 | syl | |
23 | 22 | fveq2d | |
24 | 4 | imcld | |
25 | 24 | recoscld | |
26 | 25 | recnd | |
27 | 24 | resincld | |
28 | 27 | recnd | |
29 | mulcl | |
|
30 | 1 28 29 | sylancr | |
31 | 26 30 | addcld | |
32 | 6 31 | remul2d | |
33 | 25 27 | crred | |
34 | imre | |
|
35 | 4 34 | syl | |
36 | 1 1 | mulneg1i | |
37 | ixi | |
|
38 | 37 | negeqi | |
39 | negneg1e1 | |
|
40 | 36 38 39 | 3eqtri | |
41 | 40 | oveq1i | |
42 | negicn | |
|
43 | 42 | a1i | |
44 | 1 | a1i | |
45 | 43 44 2 | mulassd | |
46 | mullid | |
|
47 | 46 | adantr | |
48 | 41 45 47 | 3eqtr3a | |
49 | 48 | fveq2d | |
50 | 35 49 | eqtrd | |
51 | 50 | fveq2d | |
52 | 33 51 | eqtrd | |
53 | 52 | oveq2d | |
54 | 23 32 53 | 3eqtrd | |
55 | 20 54 | breqtrrd | |