Metamath Proof Explorer


Theorem asinsinlem

Description: Lemma for asinsin . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinsinlem AAπ2π20<eiA

Proof

Step Hyp Ref Expression
1 ax-icn i
2 simpl AAπ2π2A
3 mulcl iAiA
4 1 2 3 sylancr AAπ2π2iA
5 4 recld AAπ2π2iA
6 5 reefcld AAπ2π2eiA
7 simpr AAπ2π2Aπ2π2
8 neghalfpirx π2*
9 halfpire π2
10 9 rexri π2*
11 elioo2 π2*π2*Aπ2π2Aπ2<AA<π2
12 8 10 11 mp2an Aπ2π2Aπ2<AA<π2
13 7 12 sylib AAπ2π2Aπ2<AA<π2
14 13 simp1d AAπ2π2A
15 14 recoscld AAπ2π2cosA
16 efgt0 iA0<eiA
17 5 16 syl AAπ2π20<eiA
18 cosq14gt0 Aπ2π20<cosA
19 18 adantl AAπ2π20<cosA
20 6 15 17 19 mulgt0d AAπ2π20<eiAcosA
21 efeul iAeiA=eiAcosiA+isiniA
22 4 21 syl AAπ2π2eiA=eiAcosiA+isiniA
23 22 fveq2d AAπ2π2eiA=eiAcosiA+isiniA
24 4 imcld AAπ2π2iA
25 24 recoscld AAπ2π2cosiA
26 25 recnd AAπ2π2cosiA
27 24 resincld AAπ2π2siniA
28 27 recnd AAπ2π2siniA
29 mulcl isiniAisiniA
30 1 28 29 sylancr AAπ2π2isiniA
31 26 30 addcld AAπ2π2cosiA+isiniA
32 6 31 remul2d AAπ2π2eiAcosiA+isiniA=eiAcosiA+isiniA
33 25 27 crred AAπ2π2cosiA+isiniA=cosiA
34 imre iAiA=iiA
35 4 34 syl AAπ2π2iA=iiA
36 1 1 mulneg1i ii=ii
37 ixi ii=1
38 37 negeqi ii=-1
39 negneg1e1 -1=1
40 36 38 39 3eqtri ii=1
41 40 oveq1i iiA=1A
42 negicn i
43 42 a1i AAπ2π2i
44 1 a1i AAπ2π2i
45 43 44 2 mulassd AAπ2π2iiA=iiA
46 mullid A1A=A
47 46 adantr AAπ2π21A=A
48 41 45 47 3eqtr3a AAπ2π2iiA=A
49 48 fveq2d AAπ2π2iiA=A
50 35 49 eqtrd AAπ2π2iA=A
51 50 fveq2d AAπ2π2cosiA=cosA
52 33 51 eqtrd AAπ2π2cosiA+isiniA=cosA
53 52 oveq2d AAπ2π2eiAcosiA+isiniA=eiAcosA
54 23 32 53 3eqtrd AAπ2π2eiA=eiAcosA
55 20 54 breqtrrd AAπ2π20<eiA