| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
| 2 |
1
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` A ) e. CC ) |
| 3 |
|
asinval |
|- ( ( sin ` A ) e. CC -> ( arcsin ` ( sin ` A ) ) = ( -u _i x. ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) ) ) |
| 4 |
2 3
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` A ) ) = ( -u _i x. ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) ) ) |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
|
mulcl |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
| 7 |
5 2 6
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` A ) ) e. CC ) |
| 8 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) |
| 9 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 10 |
5 8 9
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. A ) e. CC ) |
| 11 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 12 |
10 11
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) e. CC ) |
| 13 |
7 12
|
pncan3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) + ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ) = ( exp ` ( _i x. A ) ) ) |
| 14 |
12 7
|
subcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) e. CC ) |
| 15 |
|
ax-1cn |
|- 1 e. CC |
| 16 |
2
|
sqcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` A ) ^ 2 ) e. CC ) |
| 17 |
|
subcl |
|- ( ( 1 e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC ) -> ( 1 - ( ( sin ` A ) ^ 2 ) ) e. CC ) |
| 18 |
15 16 17
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 - ( ( sin ` A ) ^ 2 ) ) e. CC ) |
| 19 |
|
binom2sub |
|- ( ( ( exp ` ( _i x. A ) ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) -> ( ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ^ 2 ) = ( ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) + ( ( _i x. ( sin ` A ) ) ^ 2 ) ) ) |
| 20 |
12 7 19
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ^ 2 ) = ( ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) + ( ( _i x. ( sin ` A ) ) ^ 2 ) ) ) |
| 21 |
12
|
sqvald |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) ^ 2 ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
| 22 |
|
2cn |
|- 2 e. CC |
| 23 |
22
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 2 e. CC ) |
| 24 |
23 12 7
|
mul12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) |
| 25 |
21 24
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 26 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
| 27 |
26
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) e. CC ) |
| 28 |
|
subsq |
|- ( ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) -> ( ( ( cos ` A ) ^ 2 ) - ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) ) |
| 29 |
27 7 28
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) - ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) ) |
| 30 |
|
sqmul |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( ( _i x. ( sin ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sin ` A ) ^ 2 ) ) ) |
| 31 |
5 2 30
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sin ` A ) ^ 2 ) ) ) |
| 32 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
| 33 |
32
|
oveq1i |
|- ( ( _i ^ 2 ) x. ( ( sin ` A ) ^ 2 ) ) = ( -u 1 x. ( ( sin ` A ) ^ 2 ) ) |
| 34 |
16
|
mulm1d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u 1 x. ( ( sin ` A ) ^ 2 ) ) = -u ( ( sin ` A ) ^ 2 ) ) |
| 35 |
33 34
|
eqtrid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i ^ 2 ) x. ( ( sin ` A ) ^ 2 ) ) = -u ( ( sin ` A ) ^ 2 ) ) |
| 36 |
31 35
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) ^ 2 ) = -u ( ( sin ` A ) ^ 2 ) ) |
| 37 |
36
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) - ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( ( ( cos ` A ) ^ 2 ) - -u ( ( sin ` A ) ^ 2 ) ) ) |
| 38 |
27
|
sqcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` A ) ^ 2 ) e. CC ) |
| 39 |
38 16
|
subnegd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) - -u ( ( sin ` A ) ^ 2 ) ) = ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) |
| 40 |
38 16
|
addcomd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
| 41 |
37 39 40
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) - ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
| 42 |
|
efival |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 43 |
42
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 44 |
7
|
2timesd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. ( sin ` A ) ) ) = ( ( _i x. ( sin ` A ) ) + ( _i x. ( sin ` A ) ) ) ) |
| 45 |
43 44
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( 2 x. ( _i x. ( sin ` A ) ) ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) - ( ( _i x. ( sin ` A ) ) + ( _i x. ( sin ` A ) ) ) ) ) |
| 46 |
27 7 7
|
pnpcan2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) - ( ( _i x. ( sin ` A ) ) + ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
| 47 |
45 46
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( 2 x. ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
| 48 |
43 47
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) ) |
| 49 |
|
mulcl |
|- ( ( 2 e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) -> ( 2 x. ( _i x. ( sin ` A ) ) ) e. CC ) |
| 50 |
22 7 49
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. ( sin ` A ) ) ) e. CC ) |
| 51 |
12 12 50
|
subdid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 52 |
48 51
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 53 |
29 41 52
|
3eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 54 |
|
sincossq |
|- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 55 |
54
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 56 |
25 53 55
|
3eqtr2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) = 1 ) |
| 57 |
56 36
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) + ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( 1 + -u ( ( sin ` A ) ^ 2 ) ) ) |
| 58 |
|
negsub |
|- ( ( 1 e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC ) -> ( 1 + -u ( ( sin ` A ) ^ 2 ) ) = ( 1 - ( ( sin ` A ) ^ 2 ) ) ) |
| 59 |
15 16 58
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 + -u ( ( sin ` A ) ^ 2 ) ) = ( 1 - ( ( sin ` A ) ^ 2 ) ) ) |
| 60 |
20 57 59
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ^ 2 ) = ( 1 - ( ( sin ` A ) ^ 2 ) ) ) |
| 61 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 62 |
61
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 / 2 ) e. RR ) |
| 63 |
|
negicn |
|- -u _i e. CC |
| 64 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
| 65 |
63 8 64
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. A ) e. CC ) |
| 66 |
|
efcl |
|- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 67 |
65 66
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 68 |
12 67
|
addcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 69 |
68
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) e. RR ) |
| 70 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
| 71 |
70
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( 1 / 2 ) ) |
| 72 |
12
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( _i x. A ) ) ) e. RR ) |
| 73 |
67
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( -u _i x. A ) ) ) e. RR ) |
| 74 |
|
asinsinlem |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. A ) ) ) ) |
| 75 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
| 76 |
75
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u A e. CC ) |
| 77 |
|
reneg |
|- ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 78 |
77
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` -u A ) = -u ( Re ` A ) ) |
| 79 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 80 |
79
|
renegcli |
|- -u ( _pi / 2 ) e. RR |
| 81 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 82 |
|
iooneg |
|- ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ ( Re ` A ) e. RR ) -> ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( Re ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) |
| 83 |
80 79 81 82
|
mp3an12i |
|- ( A e. CC -> ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( Re ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) |
| 84 |
83
|
biimpa |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( Re ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) |
| 85 |
79
|
recni |
|- ( _pi / 2 ) e. CC |
| 86 |
85
|
negnegi |
|- -u -u ( _pi / 2 ) = ( _pi / 2 ) |
| 87 |
86
|
oveq2i |
|- ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) = ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
| 88 |
84 87
|
eleqtrdi |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 89 |
78 88
|
eqeltrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 90 |
|
asinsinlem |
|- ( ( -u A e. CC /\ ( Re ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. -u A ) ) ) ) |
| 91 |
76 89 90
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. -u A ) ) ) ) |
| 92 |
|
mulneg12 |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 93 |
5 8 92
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 94 |
93
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( -u _i x. A ) ) = ( exp ` ( _i x. -u A ) ) ) |
| 95 |
94
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( -u _i x. A ) ) ) = ( Re ` ( exp ` ( _i x. -u A ) ) ) ) |
| 96 |
91 95
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( -u _i x. A ) ) ) ) |
| 97 |
72 73 74 96
|
addgt0d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( ( Re ` ( exp ` ( _i x. A ) ) ) + ( Re ` ( exp ` ( -u _i x. A ) ) ) ) ) |
| 98 |
12 67
|
readdd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) = ( ( Re ` ( exp ` ( _i x. A ) ) ) + ( Re ` ( exp ` ( -u _i x. A ) ) ) ) ) |
| 99 |
97 98
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
| 100 |
62 69 71 99
|
mulgt0d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( ( 1 / 2 ) x. ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 101 |
|
cosval |
|- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 102 |
101
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 103 |
|
2ne0 |
|- 2 =/= 0 |
| 104 |
103
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 2 =/= 0 ) |
| 105 |
68 23 104
|
divrec2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
| 106 |
102 105
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) = ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
| 107 |
106
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( cos ` A ) ) = ( Re ` ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 108 |
|
remul2 |
|- ( ( ( 1 / 2 ) e. RR /\ ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) -> ( Re ` ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 109 |
61 68 108
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 110 |
107 109
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( cos ` A ) ) = ( ( 1 / 2 ) x. ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 111 |
100 110
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( cos ` A ) ) ) |
| 112 |
27 7 43
|
mvrraddd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) = ( cos ` A ) ) |
| 113 |
112
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ) = ( Re ` ( cos ` A ) ) ) |
| 114 |
111 113
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ) ) |
| 115 |
14 18 60 114
|
eqsqrt2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) = ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) |
| 116 |
115
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) + ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ) = ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) |
| 117 |
13 116
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) = ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) |
| 118 |
117
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( _i x. A ) ) ) = ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) ) |
| 119 |
|
pire |
|- _pi e. RR |
| 120 |
119
|
renegcli |
|- -u _pi e. RR |
| 121 |
120
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi e. RR ) |
| 122 |
80
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( _pi / 2 ) e. RR ) |
| 123 |
|
elioore |
|- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( Re ` A ) e. RR ) |
| 124 |
123
|
adantl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) e. RR ) |
| 125 |
|
pirp |
|- _pi e. RR+ |
| 126 |
|
rphalflt |
|- ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) |
| 127 |
125 126
|
ax-mp |
|- ( _pi / 2 ) < _pi |
| 128 |
79 119
|
ltnegi |
|- ( ( _pi / 2 ) < _pi <-> -u _pi < -u ( _pi / 2 ) ) |
| 129 |
127 128
|
mpbi |
|- -u _pi < -u ( _pi / 2 ) |
| 130 |
129
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < -u ( _pi / 2 ) ) |
| 131 |
|
eliooord |
|- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 132 |
131
|
adantl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
| 133 |
132
|
simpld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( _pi / 2 ) < ( Re ` A ) ) |
| 134 |
121 122 124 130 133
|
lttrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < ( Re ` A ) ) |
| 135 |
|
imre |
|- ( ( _i x. A ) e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
| 136 |
10 135
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
| 137 |
5 5
|
mulneg1i |
|- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 138 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 139 |
138
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
| 140 |
15
|
negnegi |
|- -u -u 1 = 1 |
| 141 |
137 139 140
|
3eqtri |
|- ( -u _i x. _i ) = 1 |
| 142 |
141
|
oveq1i |
|- ( ( -u _i x. _i ) x. A ) = ( 1 x. A ) |
| 143 |
63
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _i e. CC ) |
| 144 |
5
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _i e. CC ) |
| 145 |
143 144 8
|
mulassd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
| 146 |
|
mullid |
|- ( A e. CC -> ( 1 x. A ) = A ) |
| 147 |
146
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 x. A ) = A ) |
| 148 |
142 145 147
|
3eqtr3a |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. ( _i x. A ) ) = A ) |
| 149 |
148
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( -u _i x. ( _i x. A ) ) ) = ( Re ` A ) ) |
| 150 |
136 149
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) = ( Re ` A ) ) |
| 151 |
134 150
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < ( Im ` ( _i x. A ) ) ) |
| 152 |
119
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi e. RR ) |
| 153 |
79
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _pi / 2 ) e. RR ) |
| 154 |
132
|
simprd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) < ( _pi / 2 ) ) |
| 155 |
127
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _pi / 2 ) < _pi ) |
| 156 |
124 153 152 154 155
|
lttrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) < _pi ) |
| 157 |
124 152 156
|
ltled |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) <_ _pi ) |
| 158 |
150 157
|
eqbrtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) <_ _pi ) |
| 159 |
|
ellogrn |
|- ( ( _i x. A ) e. ran log <-> ( ( _i x. A ) e. CC /\ -u _pi < ( Im ` ( _i x. A ) ) /\ ( Im ` ( _i x. A ) ) <_ _pi ) ) |
| 160 |
10 151 158 159
|
syl3anbrc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. A ) e. ran log ) |
| 161 |
|
logef |
|- ( ( _i x. A ) e. ran log -> ( log ` ( exp ` ( _i x. A ) ) ) = ( _i x. A ) ) |
| 162 |
160 161
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( _i x. A ) ) ) = ( _i x. A ) ) |
| 163 |
118 162
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) = ( _i x. A ) ) |
| 164 |
163
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) ) = ( -u _i x. ( _i x. A ) ) ) |
| 165 |
4 164 148
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |