Step |
Hyp |
Ref |
Expression |
1 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
2 |
1
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` A ) e. CC ) |
3 |
|
asinval |
|- ( ( sin ` A ) e. CC -> ( arcsin ` ( sin ` A ) ) = ( -u _i x. ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) ) ) |
4 |
2 3
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` A ) ) = ( -u _i x. ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) ) ) |
5 |
|
ax-icn |
|- _i e. CC |
6 |
|
mulcl |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
7 |
5 2 6
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. ( sin ` A ) ) e. CC ) |
8 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) |
9 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
10 |
5 8 9
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. A ) e. CC ) |
11 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
12 |
10 11
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) e. CC ) |
13 |
7 12
|
pncan3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) + ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ) = ( exp ` ( _i x. A ) ) ) |
14 |
12 7
|
subcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) e. CC ) |
15 |
|
ax-1cn |
|- 1 e. CC |
16 |
2
|
sqcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` A ) ^ 2 ) e. CC ) |
17 |
|
subcl |
|- ( ( 1 e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC ) -> ( 1 - ( ( sin ` A ) ^ 2 ) ) e. CC ) |
18 |
15 16 17
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 - ( ( sin ` A ) ^ 2 ) ) e. CC ) |
19 |
|
binom2sub |
|- ( ( ( exp ` ( _i x. A ) ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) -> ( ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ^ 2 ) = ( ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) + ( ( _i x. ( sin ` A ) ) ^ 2 ) ) ) |
20 |
12 7 19
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ^ 2 ) = ( ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) + ( ( _i x. ( sin ` A ) ) ^ 2 ) ) ) |
21 |
12
|
sqvald |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) ^ 2 ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
22 |
|
2cn |
|- 2 e. CC |
23 |
22
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 2 e. CC ) |
24 |
23 12 7
|
mul12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) |
25 |
21 24
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) ) |
26 |
|
coscl |
|- ( A e. CC -> ( cos ` A ) e. CC ) |
27 |
26
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) e. CC ) |
28 |
|
subsq |
|- ( ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) -> ( ( ( cos ` A ) ^ 2 ) - ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) ) |
29 |
27 7 28
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) - ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) ) |
30 |
|
sqmul |
|- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( ( _i x. ( sin ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sin ` A ) ^ 2 ) ) ) |
31 |
5 2 30
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) ^ 2 ) = ( ( _i ^ 2 ) x. ( ( sin ` A ) ^ 2 ) ) ) |
32 |
|
i2 |
|- ( _i ^ 2 ) = -u 1 |
33 |
32
|
oveq1i |
|- ( ( _i ^ 2 ) x. ( ( sin ` A ) ^ 2 ) ) = ( -u 1 x. ( ( sin ` A ) ^ 2 ) ) |
34 |
16
|
mulm1d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u 1 x. ( ( sin ` A ) ^ 2 ) ) = -u ( ( sin ` A ) ^ 2 ) ) |
35 |
33 34
|
eqtrid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i ^ 2 ) x. ( ( sin ` A ) ^ 2 ) ) = -u ( ( sin ` A ) ^ 2 ) ) |
36 |
31 35
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) ^ 2 ) = -u ( ( sin ` A ) ^ 2 ) ) |
37 |
36
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) - ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( ( ( cos ` A ) ^ 2 ) - -u ( ( sin ` A ) ^ 2 ) ) ) |
38 |
27
|
sqcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( cos ` A ) ^ 2 ) e. CC ) |
39 |
38 16
|
subnegd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) - -u ( ( sin ` A ) ^ 2 ) ) = ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) |
40 |
38 16
|
addcomd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
41 |
37 39 40
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) ^ 2 ) - ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
42 |
|
efival |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
43 |
42
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
44 |
7
|
2timesd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. ( sin ` A ) ) ) = ( ( _i x. ( sin ` A ) ) + ( _i x. ( sin ` A ) ) ) ) |
45 |
43 44
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( 2 x. ( _i x. ( sin ` A ) ) ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) - ( ( _i x. ( sin ` A ) ) + ( _i x. ( sin ` A ) ) ) ) ) |
46 |
27 7 7
|
pnpcan2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) - ( ( _i x. ( sin ` A ) ) + ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
47 |
45 46
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( 2 x. ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
48 |
43 47
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) ) |
49 |
|
mulcl |
|- ( ( 2 e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) -> ( 2 x. ( _i x. ( sin ` A ) ) ) e. CC ) |
50 |
22 7 49
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 2 x. ( _i x. ( sin ` A ) ) ) e. CC ) |
51 |
12 12 50
|
subdid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) ) |
52 |
48 51
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) ) |
53 |
29 41 52
|
3eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( 2 x. ( _i x. ( sin ` A ) ) ) ) ) ) |
54 |
|
sincossq |
|- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
55 |
54
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
56 |
25 53 55
|
3eqtr2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) = 1 ) |
57 |
56 36
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( ( exp ` ( _i x. A ) ) ^ 2 ) - ( 2 x. ( ( exp ` ( _i x. A ) ) x. ( _i x. ( sin ` A ) ) ) ) ) + ( ( _i x. ( sin ` A ) ) ^ 2 ) ) = ( 1 + -u ( ( sin ` A ) ^ 2 ) ) ) |
58 |
|
negsub |
|- ( ( 1 e. CC /\ ( ( sin ` A ) ^ 2 ) e. CC ) -> ( 1 + -u ( ( sin ` A ) ^ 2 ) ) = ( 1 - ( ( sin ` A ) ^ 2 ) ) ) |
59 |
15 16 58
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 + -u ( ( sin ` A ) ^ 2 ) ) = ( 1 - ( ( sin ` A ) ^ 2 ) ) ) |
60 |
20 57 59
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ^ 2 ) = ( 1 - ( ( sin ` A ) ^ 2 ) ) ) |
61 |
|
halfre |
|- ( 1 / 2 ) e. RR |
62 |
61
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 / 2 ) e. RR ) |
63 |
|
negicn |
|- -u _i e. CC |
64 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
65 |
63 8 64
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. A ) e. CC ) |
66 |
|
efcl |
|- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
67 |
65 66
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( -u _i x. A ) ) e. CC ) |
68 |
12 67
|
addcld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) |
69 |
68
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) e. RR ) |
70 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
71 |
70
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( 1 / 2 ) ) |
72 |
12
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( _i x. A ) ) ) e. RR ) |
73 |
67
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( -u _i x. A ) ) ) e. RR ) |
74 |
|
asinsinlem |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. A ) ) ) ) |
75 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
76 |
75
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u A e. CC ) |
77 |
|
reneg |
|- ( A e. CC -> ( Re ` -u A ) = -u ( Re ` A ) ) |
78 |
77
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` -u A ) = -u ( Re ` A ) ) |
79 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
80 |
79
|
renegcli |
|- -u ( _pi / 2 ) e. RR |
81 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
82 |
|
iooneg |
|- ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ ( Re ` A ) e. RR ) -> ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( Re ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) |
83 |
80 79 81 82
|
mp3an12i |
|- ( A e. CC -> ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) <-> -u ( Re ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) ) |
84 |
83
|
biimpa |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( Re ` A ) e. ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) ) |
85 |
79
|
recni |
|- ( _pi / 2 ) e. CC |
86 |
85
|
negnegi |
|- -u -u ( _pi / 2 ) = ( _pi / 2 ) |
87 |
86
|
oveq2i |
|- ( -u ( _pi / 2 ) (,) -u -u ( _pi / 2 ) ) = ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) |
88 |
84 87
|
eleqtrdi |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
89 |
78 88
|
eqeltrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
90 |
|
asinsinlem |
|- ( ( -u A e. CC /\ ( Re ` -u A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. -u A ) ) ) ) |
91 |
76 89 90
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( _i x. -u A ) ) ) ) |
92 |
|
mulneg12 |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
93 |
5 8 92
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
94 |
93
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( -u _i x. A ) ) = ( exp ` ( _i x. -u A ) ) ) |
95 |
94
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( exp ` ( -u _i x. A ) ) ) = ( Re ` ( exp ` ( _i x. -u A ) ) ) ) |
96 |
91 95
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( exp ` ( -u _i x. A ) ) ) ) |
97 |
72 73 74 96
|
addgt0d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( ( Re ` ( exp ` ( _i x. A ) ) ) + ( Re ` ( exp ` ( -u _i x. A ) ) ) ) ) |
98 |
12 67
|
readdd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) = ( ( Re ` ( exp ` ( _i x. A ) ) ) + ( Re ` ( exp ` ( -u _i x. A ) ) ) ) ) |
99 |
97 98
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
100 |
62 69 71 99
|
mulgt0d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( ( 1 / 2 ) x. ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
101 |
|
cosval |
|- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
102 |
101
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
103 |
|
2ne0 |
|- 2 =/= 0 |
104 |
103
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 2 =/= 0 ) |
105 |
68 23 104
|
divrec2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
106 |
102 105
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) = ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
107 |
106
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( cos ` A ) ) = ( Re ` ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
108 |
|
remul2 |
|- ( ( ( 1 / 2 ) e. RR /\ ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) -> ( Re ` ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
109 |
61 68 108
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( 1 / 2 ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( 1 / 2 ) x. ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
110 |
107 109
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( cos ` A ) ) = ( ( 1 / 2 ) x. ( Re ` ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
111 |
100 110
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( cos ` A ) ) ) |
112 |
27 7 43
|
mvrraddd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) = ( cos ` A ) ) |
113 |
112
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ) = ( Re ` ( cos ` A ) ) ) |
114 |
111 113
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> 0 < ( Re ` ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ) ) |
115 |
14 18 60 114
|
eqsqrt2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) = ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) |
116 |
115
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _i x. ( sin ` A ) ) + ( ( exp ` ( _i x. A ) ) - ( _i x. ( sin ` A ) ) ) ) = ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) |
117 |
13 116
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( exp ` ( _i x. A ) ) = ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) |
118 |
117
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( _i x. A ) ) ) = ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) ) |
119 |
|
pire |
|- _pi e. RR |
120 |
119
|
renegcli |
|- -u _pi e. RR |
121 |
120
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi e. RR ) |
122 |
80
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( _pi / 2 ) e. RR ) |
123 |
|
elioore |
|- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( Re ` A ) e. RR ) |
124 |
123
|
adantl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) e. RR ) |
125 |
|
pirp |
|- _pi e. RR+ |
126 |
|
rphalflt |
|- ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) |
127 |
125 126
|
ax-mp |
|- ( _pi / 2 ) < _pi |
128 |
79 119
|
ltnegi |
|- ( ( _pi / 2 ) < _pi <-> -u _pi < -u ( _pi / 2 ) ) |
129 |
127 128
|
mpbi |
|- -u _pi < -u ( _pi / 2 ) |
130 |
129
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < -u ( _pi / 2 ) ) |
131 |
|
eliooord |
|- ( ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
132 |
131
|
adantl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u ( _pi / 2 ) < ( Re ` A ) /\ ( Re ` A ) < ( _pi / 2 ) ) ) |
133 |
132
|
simpld |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u ( _pi / 2 ) < ( Re ` A ) ) |
134 |
121 122 124 130 133
|
lttrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < ( Re ` A ) ) |
135 |
|
imre |
|- ( ( _i x. A ) e. CC -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
136 |
10 135
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) = ( Re ` ( -u _i x. ( _i x. A ) ) ) ) |
137 |
5 5
|
mulneg1i |
|- ( -u _i x. _i ) = -u ( _i x. _i ) |
138 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
139 |
138
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
140 |
15
|
negnegi |
|- -u -u 1 = 1 |
141 |
137 139 140
|
3eqtri |
|- ( -u _i x. _i ) = 1 |
142 |
141
|
oveq1i |
|- ( ( -u _i x. _i ) x. A ) = ( 1 x. A ) |
143 |
63
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _i e. CC ) |
144 |
5
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _i e. CC ) |
145 |
143 144 8
|
mulassd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( -u _i x. _i ) x. A ) = ( -u _i x. ( _i x. A ) ) ) |
146 |
|
mulid2 |
|- ( A e. CC -> ( 1 x. A ) = A ) |
147 |
146
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( 1 x. A ) = A ) |
148 |
142 145 147
|
3eqtr3a |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. ( _i x. A ) ) = A ) |
149 |
148
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` ( -u _i x. ( _i x. A ) ) ) = ( Re ` A ) ) |
150 |
136 149
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) = ( Re ` A ) ) |
151 |
134 150
|
breqtrrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -u _pi < ( Im ` ( _i x. A ) ) ) |
152 |
119
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi e. RR ) |
153 |
79
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _pi / 2 ) e. RR ) |
154 |
132
|
simprd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) < ( _pi / 2 ) ) |
155 |
127
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _pi / 2 ) < _pi ) |
156 |
124 153 152 154 155
|
lttrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) < _pi ) |
157 |
124 152 156
|
ltled |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Re ` A ) <_ _pi ) |
158 |
150 157
|
eqbrtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( Im ` ( _i x. A ) ) <_ _pi ) |
159 |
|
ellogrn |
|- ( ( _i x. A ) e. ran log <-> ( ( _i x. A ) e. CC /\ -u _pi < ( Im ` ( _i x. A ) ) /\ ( Im ` ( _i x. A ) ) <_ _pi ) ) |
160 |
10 151 158 159
|
syl3anbrc |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( _i x. A ) e. ran log ) |
161 |
|
logef |
|- ( ( _i x. A ) e. ran log -> ( log ` ( exp ` ( _i x. A ) ) ) = ( _i x. A ) ) |
162 |
160 161
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( exp ` ( _i x. A ) ) ) = ( _i x. A ) ) |
163 |
118 162
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) = ( _i x. A ) ) |
164 |
163
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( -u _i x. ( log ` ( ( _i x. ( sin ` A ) ) + ( sqrt ` ( 1 - ( ( sin ` A ) ^ 2 ) ) ) ) ) ) = ( -u _i x. ( _i x. A ) ) ) |
165 |
4 164 148
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |