| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bezout.1 |
|- M = { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } |
| 2 |
|
bezout.3 |
|- ( ph -> A e. ZZ ) |
| 3 |
|
bezout.4 |
|- ( ph -> B e. ZZ ) |
| 4 |
|
bezout.2 |
|- G = inf ( M , RR , < ) |
| 5 |
|
bezout.5 |
|- ( ph -> -. ( A = 0 /\ B = 0 ) ) |
| 6 |
1
|
ssrab3 |
|- M C_ NN |
| 7 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 8 |
6 7
|
sseqtri |
|- M C_ ( ZZ>= ` 1 ) |
| 9 |
1 2 3
|
bezoutlem1 |
|- ( ph -> ( A =/= 0 -> ( abs ` A ) e. M ) ) |
| 10 |
|
ne0i |
|- ( ( abs ` A ) e. M -> M =/= (/) ) |
| 11 |
9 10
|
syl6 |
|- ( ph -> ( A =/= 0 -> M =/= (/) ) ) |
| 12 |
|
eqid |
|- { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } = { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } |
| 13 |
12 3 2
|
bezoutlem1 |
|- ( ph -> ( B =/= 0 -> ( abs ` B ) e. { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } ) ) |
| 14 |
|
rexcom |
|- ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. y e. ZZ E. x e. ZZ z = ( ( A x. x ) + ( B x. y ) ) ) |
| 15 |
2
|
zcnd |
|- ( ph -> A e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> A e. CC ) |
| 17 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 18 |
17
|
ad2antll |
|- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> x e. CC ) |
| 19 |
16 18
|
mulcld |
|- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> ( A x. x ) e. CC ) |
| 20 |
3
|
zcnd |
|- ( ph -> B e. CC ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> B e. CC ) |
| 22 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
| 23 |
22
|
ad2antrl |
|- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> y e. CC ) |
| 24 |
21 23
|
mulcld |
|- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> ( B x. y ) e. CC ) |
| 25 |
19 24
|
addcomd |
|- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> ( ( A x. x ) + ( B x. y ) ) = ( ( B x. y ) + ( A x. x ) ) ) |
| 26 |
25
|
eqeq2d |
|- ( ( ph /\ ( y e. ZZ /\ x e. ZZ ) ) -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> z = ( ( B x. y ) + ( A x. x ) ) ) ) |
| 27 |
26
|
2rexbidva |
|- ( ph -> ( E. y e. ZZ E. x e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) ) ) |
| 28 |
14 27
|
bitrid |
|- ( ph -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) ) ) |
| 29 |
28
|
rabbidv |
|- ( ph -> { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } = { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } ) |
| 30 |
1 29
|
eqtrid |
|- ( ph -> M = { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } ) |
| 31 |
30
|
eleq2d |
|- ( ph -> ( ( abs ` B ) e. M <-> ( abs ` B ) e. { z e. NN | E. y e. ZZ E. x e. ZZ z = ( ( B x. y ) + ( A x. x ) ) } ) ) |
| 32 |
13 31
|
sylibrd |
|- ( ph -> ( B =/= 0 -> ( abs ` B ) e. M ) ) |
| 33 |
|
ne0i |
|- ( ( abs ` B ) e. M -> M =/= (/) ) |
| 34 |
32 33
|
syl6 |
|- ( ph -> ( B =/= 0 -> M =/= (/) ) ) |
| 35 |
|
neorian |
|- ( ( A =/= 0 \/ B =/= 0 ) <-> -. ( A = 0 /\ B = 0 ) ) |
| 36 |
5 35
|
sylibr |
|- ( ph -> ( A =/= 0 \/ B =/= 0 ) ) |
| 37 |
11 34 36
|
mpjaod |
|- ( ph -> M =/= (/) ) |
| 38 |
|
infssuzcl |
|- ( ( M C_ ( ZZ>= ` 1 ) /\ M =/= (/) ) -> inf ( M , RR , < ) e. M ) |
| 39 |
8 37 38
|
sylancr |
|- ( ph -> inf ( M , RR , < ) e. M ) |
| 40 |
4 39
|
eqeltrid |
|- ( ph -> G e. M ) |