| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bezout.1 |
|- M = { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } |
| 2 |
|
bezout.3 |
|- ( ph -> A e. ZZ ) |
| 3 |
|
bezout.4 |
|- ( ph -> B e. ZZ ) |
| 4 |
|
fveq2 |
|- ( z = A -> ( abs ` z ) = ( abs ` A ) ) |
| 5 |
|
oveq1 |
|- ( z = A -> ( z x. x ) = ( A x. x ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( z = A -> ( ( abs ` z ) = ( z x. x ) <-> ( abs ` A ) = ( A x. x ) ) ) |
| 7 |
6
|
rexbidv |
|- ( z = A -> ( E. x e. ZZ ( abs ` z ) = ( z x. x ) <-> E. x e. ZZ ( abs ` A ) = ( A x. x ) ) ) |
| 8 |
|
zre |
|- ( z e. ZZ -> z e. RR ) |
| 9 |
|
1z |
|- 1 e. ZZ |
| 10 |
|
ax-1rid |
|- ( z e. RR -> ( z x. 1 ) = z ) |
| 11 |
10
|
eqcomd |
|- ( z e. RR -> z = ( z x. 1 ) ) |
| 12 |
|
oveq2 |
|- ( x = 1 -> ( z x. x ) = ( z x. 1 ) ) |
| 13 |
12
|
rspceeqv |
|- ( ( 1 e. ZZ /\ z = ( z x. 1 ) ) -> E. x e. ZZ z = ( z x. x ) ) |
| 14 |
9 11 13
|
sylancr |
|- ( z e. RR -> E. x e. ZZ z = ( z x. x ) ) |
| 15 |
|
eqeq1 |
|- ( ( abs ` z ) = z -> ( ( abs ` z ) = ( z x. x ) <-> z = ( z x. x ) ) ) |
| 16 |
15
|
rexbidv |
|- ( ( abs ` z ) = z -> ( E. x e. ZZ ( abs ` z ) = ( z x. x ) <-> E. x e. ZZ z = ( z x. x ) ) ) |
| 17 |
14 16
|
syl5ibrcom |
|- ( z e. RR -> ( ( abs ` z ) = z -> E. x e. ZZ ( abs ` z ) = ( z x. x ) ) ) |
| 18 |
|
neg1z |
|- -u 1 e. ZZ |
| 19 |
|
recn |
|- ( z e. RR -> z e. CC ) |
| 20 |
19
|
mulm1d |
|- ( z e. RR -> ( -u 1 x. z ) = -u z ) |
| 21 |
|
neg1cn |
|- -u 1 e. CC |
| 22 |
|
mulcom |
|- ( ( -u 1 e. CC /\ z e. CC ) -> ( -u 1 x. z ) = ( z x. -u 1 ) ) |
| 23 |
21 19 22
|
sylancr |
|- ( z e. RR -> ( -u 1 x. z ) = ( z x. -u 1 ) ) |
| 24 |
20 23
|
eqtr3d |
|- ( z e. RR -> -u z = ( z x. -u 1 ) ) |
| 25 |
|
oveq2 |
|- ( x = -u 1 -> ( z x. x ) = ( z x. -u 1 ) ) |
| 26 |
25
|
rspceeqv |
|- ( ( -u 1 e. ZZ /\ -u z = ( z x. -u 1 ) ) -> E. x e. ZZ -u z = ( z x. x ) ) |
| 27 |
18 24 26
|
sylancr |
|- ( z e. RR -> E. x e. ZZ -u z = ( z x. x ) ) |
| 28 |
|
eqeq1 |
|- ( ( abs ` z ) = -u z -> ( ( abs ` z ) = ( z x. x ) <-> -u z = ( z x. x ) ) ) |
| 29 |
28
|
rexbidv |
|- ( ( abs ` z ) = -u z -> ( E. x e. ZZ ( abs ` z ) = ( z x. x ) <-> E. x e. ZZ -u z = ( z x. x ) ) ) |
| 30 |
27 29
|
syl5ibrcom |
|- ( z e. RR -> ( ( abs ` z ) = -u z -> E. x e. ZZ ( abs ` z ) = ( z x. x ) ) ) |
| 31 |
|
absor |
|- ( z e. RR -> ( ( abs ` z ) = z \/ ( abs ` z ) = -u z ) ) |
| 32 |
17 30 31
|
mpjaod |
|- ( z e. RR -> E. x e. ZZ ( abs ` z ) = ( z x. x ) ) |
| 33 |
8 32
|
syl |
|- ( z e. ZZ -> E. x e. ZZ ( abs ` z ) = ( z x. x ) ) |
| 34 |
7 33
|
vtoclga |
|- ( A e. ZZ -> E. x e. ZZ ( abs ` A ) = ( A x. x ) ) |
| 35 |
2 34
|
syl |
|- ( ph -> E. x e. ZZ ( abs ` A ) = ( A x. x ) ) |
| 36 |
3
|
zcnd |
|- ( ph -> B e. CC ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ x e. ZZ ) -> B e. CC ) |
| 38 |
37
|
mul01d |
|- ( ( ph /\ x e. ZZ ) -> ( B x. 0 ) = 0 ) |
| 39 |
38
|
oveq2d |
|- ( ( ph /\ x e. ZZ ) -> ( ( A x. x ) + ( B x. 0 ) ) = ( ( A x. x ) + 0 ) ) |
| 40 |
2
|
zcnd |
|- ( ph -> A e. CC ) |
| 41 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 42 |
|
mulcl |
|- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
| 43 |
40 41 42
|
syl2an |
|- ( ( ph /\ x e. ZZ ) -> ( A x. x ) e. CC ) |
| 44 |
43
|
addridd |
|- ( ( ph /\ x e. ZZ ) -> ( ( A x. x ) + 0 ) = ( A x. x ) ) |
| 45 |
39 44
|
eqtrd |
|- ( ( ph /\ x e. ZZ ) -> ( ( A x. x ) + ( B x. 0 ) ) = ( A x. x ) ) |
| 46 |
45
|
eqeq2d |
|- ( ( ph /\ x e. ZZ ) -> ( ( abs ` A ) = ( ( A x. x ) + ( B x. 0 ) ) <-> ( abs ` A ) = ( A x. x ) ) ) |
| 47 |
|
0z |
|- 0 e. ZZ |
| 48 |
|
oveq2 |
|- ( y = 0 -> ( B x. y ) = ( B x. 0 ) ) |
| 49 |
48
|
oveq2d |
|- ( y = 0 -> ( ( A x. x ) + ( B x. y ) ) = ( ( A x. x ) + ( B x. 0 ) ) ) |
| 50 |
49
|
rspceeqv |
|- ( ( 0 e. ZZ /\ ( abs ` A ) = ( ( A x. x ) + ( B x. 0 ) ) ) -> E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 51 |
47 50
|
mpan |
|- ( ( abs ` A ) = ( ( A x. x ) + ( B x. 0 ) ) -> E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 52 |
46 51
|
biimtrrdi |
|- ( ( ph /\ x e. ZZ ) -> ( ( abs ` A ) = ( A x. x ) -> E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 53 |
52
|
reximdva |
|- ( ph -> ( E. x e. ZZ ( abs ` A ) = ( A x. x ) -> E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 54 |
35 53
|
mpd |
|- ( ph -> E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 55 |
|
nnabscl |
|- ( ( A e. ZZ /\ A =/= 0 ) -> ( abs ` A ) e. NN ) |
| 56 |
55
|
ex |
|- ( A e. ZZ -> ( A =/= 0 -> ( abs ` A ) e. NN ) ) |
| 57 |
2 56
|
syl |
|- ( ph -> ( A =/= 0 -> ( abs ` A ) e. NN ) ) |
| 58 |
|
eqeq1 |
|- ( z = ( abs ` A ) -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 59 |
58
|
2rexbidv |
|- ( z = ( abs ` A ) -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 60 |
59 1
|
elrab2 |
|- ( ( abs ` A ) e. M <-> ( ( abs ` A ) e. NN /\ E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 61 |
60
|
simplbi2com |
|- ( E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) -> ( ( abs ` A ) e. NN -> ( abs ` A ) e. M ) ) |
| 62 |
54 57 61
|
sylsyld |
|- ( ph -> ( A =/= 0 -> ( abs ` A ) e. M ) ) |