| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bezout.1 |
|
| 2 |
|
bezout.3 |
|
| 3 |
|
bezout.4 |
|
| 4 |
|
fveq2 |
|
| 5 |
|
oveq1 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
6
|
rexbidv |
|
| 8 |
|
zre |
|
| 9 |
|
1z |
|
| 10 |
|
ax-1rid |
|
| 11 |
10
|
eqcomd |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
rspceeqv |
|
| 14 |
9 11 13
|
sylancr |
|
| 15 |
|
eqeq1 |
|
| 16 |
15
|
rexbidv |
|
| 17 |
14 16
|
syl5ibrcom |
|
| 18 |
|
neg1z |
|
| 19 |
|
recn |
|
| 20 |
19
|
mulm1d |
|
| 21 |
|
neg1cn |
|
| 22 |
|
mulcom |
|
| 23 |
21 19 22
|
sylancr |
|
| 24 |
20 23
|
eqtr3d |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
rspceeqv |
|
| 27 |
18 24 26
|
sylancr |
|
| 28 |
|
eqeq1 |
|
| 29 |
28
|
rexbidv |
|
| 30 |
27 29
|
syl5ibrcom |
|
| 31 |
|
absor |
|
| 32 |
17 30 31
|
mpjaod |
|
| 33 |
8 32
|
syl |
|
| 34 |
7 33
|
vtoclga |
|
| 35 |
2 34
|
syl |
|
| 36 |
3
|
zcnd |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
mul01d |
|
| 39 |
38
|
oveq2d |
|
| 40 |
2
|
zcnd |
|
| 41 |
|
zcn |
|
| 42 |
|
mulcl |
|
| 43 |
40 41 42
|
syl2an |
|
| 44 |
43
|
addridd |
|
| 45 |
39 44
|
eqtrd |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
|
0z |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
oveq2d |
|
| 50 |
49
|
rspceeqv |
|
| 51 |
47 50
|
mpan |
|
| 52 |
46 51
|
biimtrrdi |
|
| 53 |
52
|
reximdva |
|
| 54 |
35 53
|
mpd |
|
| 55 |
|
nnabscl |
|
| 56 |
55
|
ex |
|
| 57 |
2 56
|
syl |
|
| 58 |
|
eqeq1 |
|
| 59 |
58
|
2rexbidv |
|
| 60 |
59 1
|
elrab2 |
|
| 61 |
60
|
simplbi2com |
|
| 62 |
54 57 61
|
sylsyld |
|