Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014) ( Revised by AV, 30-Sep-2020.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bezout.1 | |
|
bezout.3 | |
||
bezout.4 | |
||
bezout.2 | |
||
bezout.5 | |
||
Assertion | bezoutlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bezout.1 | |
|
2 | bezout.3 | |
|
3 | bezout.4 | |
|
4 | bezout.2 | |
|
5 | bezout.5 | |
|
6 | 1 | ssrab3 | |
7 | nnuz | |
|
8 | 6 7 | sseqtri | |
9 | 1 2 3 | bezoutlem1 | |
10 | ne0i | |
|
11 | 9 10 | syl6 | |
12 | eqid | |
|
13 | 12 3 2 | bezoutlem1 | |
14 | rexcom | |
|
15 | 2 | zcnd | |
16 | 15 | adantr | |
17 | zcn | |
|
18 | 17 | ad2antll | |
19 | 16 18 | mulcld | |
20 | 3 | zcnd | |
21 | 20 | adantr | |
22 | zcn | |
|
23 | 22 | ad2antrl | |
24 | 21 23 | mulcld | |
25 | 19 24 | addcomd | |
26 | 25 | eqeq2d | |
27 | 26 | 2rexbidva | |
28 | 14 27 | bitrid | |
29 | 28 | rabbidv | |
30 | 1 29 | eqtrid | |
31 | 30 | eleq2d | |
32 | 13 31 | sylibrd | |
33 | ne0i | |
|
34 | 32 33 | syl6 | |
35 | neorian | |
|
36 | 5 35 | sylibr | |
37 | 11 34 36 | mpjaod | |
38 | infssuzcl | |
|
39 | 8 37 38 | sylancr | |
40 | 4 39 | eqeltrid | |