Metamath Proof Explorer


Theorem bezoutlem2

Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014) ( Revised by AV, 30-Sep-2020.)

Ref Expression
Hypotheses bezout.1 M=z|xyz=Ax+By
bezout.3 φA
bezout.4 φB
bezout.2 G=supM<
bezout.5 φ¬A=0B=0
Assertion bezoutlem2 φGM

Proof

Step Hyp Ref Expression
1 bezout.1 M=z|xyz=Ax+By
2 bezout.3 φA
3 bezout.4 φB
4 bezout.2 G=supM<
5 bezout.5 φ¬A=0B=0
6 1 ssrab3 M
7 nnuz =1
8 6 7 sseqtri M1
9 1 2 3 bezoutlem1 φA0AM
10 ne0i AMM
11 9 10 syl6 φA0M
12 eqid z|yxz=By+Ax=z|yxz=By+Ax
13 12 3 2 bezoutlem1 φB0Bz|yxz=By+Ax
14 rexcom xyz=Ax+Byyxz=Ax+By
15 2 zcnd φA
16 15 adantr φyxA
17 zcn xx
18 17 ad2antll φyxx
19 16 18 mulcld φyxAx
20 3 zcnd φB
21 20 adantr φyxB
22 zcn yy
23 22 ad2antrl φyxy
24 21 23 mulcld φyxBy
25 19 24 addcomd φyxAx+By=By+Ax
26 25 eqeq2d φyxz=Ax+Byz=By+Ax
27 26 2rexbidva φyxz=Ax+Byyxz=By+Ax
28 14 27 bitrid φxyz=Ax+Byyxz=By+Ax
29 28 rabbidv φz|xyz=Ax+By=z|yxz=By+Ax
30 1 29 eqtrid φM=z|yxz=By+Ax
31 30 eleq2d φBMBz|yxz=By+Ax
32 13 31 sylibrd φB0BM
33 ne0i BMM
34 32 33 syl6 φB0M
35 neorian A0B0¬A=0B=0
36 5 35 sylibr φA0B0
37 11 34 36 mpjaod φM
38 infssuzcl M1MsupM<M
39 8 37 38 sylancr φsupM<M
40 4 39 eqeltrid φGM