| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bezout.1 |
|
| 2 |
|
bezout.3 |
|
| 3 |
|
bezout.4 |
|
| 4 |
|
bezout.2 |
|
| 5 |
|
bezout.5 |
|
| 6 |
|
simpr |
|
| 7 |
|
eqeq1 |
|
| 8 |
7
|
2rexbidv |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
oveq1d |
|
| 11 |
10
|
eqeq2d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
13
|
eqeq2d |
|
| 15 |
11 14
|
cbvrex2vw |
|
| 16 |
8 15
|
bitrdi |
|
| 17 |
16 1
|
elrab2 |
|
| 18 |
6 17
|
sylib |
|
| 19 |
18
|
simpld |
|
| 20 |
19
|
nnred |
|
| 21 |
1 2 3 4 5
|
bezoutlem2 |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
oveq1d |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
oveq2d |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
24 27
|
cbvrex2vw |
|
| 29 |
|
eqeq1 |
|
| 30 |
29
|
2rexbidv |
|
| 31 |
28 30
|
bitrid |
|
| 32 |
31 1
|
elrab2 |
|
| 33 |
21 32
|
sylib |
|
| 34 |
33
|
simpld |
|
| 35 |
34
|
nnrpd |
|
| 36 |
35
|
adantr |
|
| 37 |
|
modlt |
|
| 38 |
20 36 37
|
syl2anc |
|
| 39 |
19
|
nnzd |
|
| 40 |
34
|
adantr |
|
| 41 |
39 40
|
zmodcld |
|
| 42 |
41
|
nn0red |
|
| 43 |
34
|
nnred |
|
| 44 |
43
|
adantr |
|
| 45 |
42 44
|
ltnled |
|
| 46 |
38 45
|
mpbid |
|
| 47 |
18
|
simprd |
|
| 48 |
33
|
simprd |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
|
simprll |
|
| 51 |
|
simprrl |
|
| 52 |
20 40
|
nndivred |
|
| 53 |
52
|
flcld |
|
| 54 |
53
|
adantr |
|
| 55 |
51 54
|
zmulcld |
|
| 56 |
50 55
|
zsubcld |
|
| 57 |
|
simprlr |
|
| 58 |
|
simprrr |
|
| 59 |
58 54
|
zmulcld |
|
| 60 |
57 59
|
zsubcld |
|
| 61 |
2
|
zcnd |
|
| 62 |
61
|
ad2antrr |
|
| 63 |
50
|
zcnd |
|
| 64 |
62 63
|
mulcld |
|
| 65 |
3
|
zcnd |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
57
|
zcnd |
|
| 68 |
66 67
|
mulcld |
|
| 69 |
55
|
zcnd |
|
| 70 |
62 69
|
mulcld |
|
| 71 |
59
|
zcnd |
|
| 72 |
66 71
|
mulcld |
|
| 73 |
64 68 70 72
|
addsub4d |
|
| 74 |
51
|
zcnd |
|
| 75 |
62 74
|
mulcld |
|
| 76 |
53
|
zcnd |
|
| 77 |
76
|
adantr |
|
| 78 |
58
|
zcnd |
|
| 79 |
66 78
|
mulcld |
|
| 80 |
62 74 77
|
mulassd |
|
| 81 |
66 78 77
|
mulassd |
|
| 82 |
80 81
|
oveq12d |
|
| 83 |
75 77 79 82
|
joinlmuladdmuld |
|
| 84 |
83
|
oveq2d |
|
| 85 |
62 63 69
|
subdid |
|
| 86 |
66 67 71
|
subdid |
|
| 87 |
85 86
|
oveq12d |
|
| 88 |
73 84 87
|
3eqtr4d |
|
| 89 |
|
oveq2 |
|
| 90 |
89
|
oveq1d |
|
| 91 |
90
|
eqeq2d |
|
| 92 |
|
oveq2 |
|
| 93 |
92
|
oveq2d |
|
| 94 |
93
|
eqeq2d |
|
| 95 |
91 94
|
rspc2ev |
|
| 96 |
56 60 88 95
|
syl3anc |
|
| 97 |
|
oveq1 |
|
| 98 |
|
oveq12 |
|
| 99 |
97 98
|
sylan2 |
|
| 100 |
99
|
eqeq1d |
|
| 101 |
100
|
2rexbidv |
|
| 102 |
96 101
|
syl5ibrcom |
|
| 103 |
102
|
expcomd |
|
| 104 |
103
|
expr |
|
| 105 |
104
|
rexlimdvv |
|
| 106 |
49 105
|
mpd |
|
| 107 |
106
|
ex |
|
| 108 |
107
|
rexlimdvv |
|
| 109 |
47 108
|
mpd |
|
| 110 |
|
modval |
|
| 111 |
20 36 110
|
syl2anc |
|
| 112 |
111
|
eqcomd |
|
| 113 |
112
|
eqeq1d |
|
| 114 |
113
|
2rexbidv |
|
| 115 |
109 114
|
mpbid |
|
| 116 |
|
eqeq1 |
|
| 117 |
116
|
2rexbidv |
|
| 118 |
117 1
|
elrab2 |
|
| 119 |
118
|
simplbi2com |
|
| 120 |
115 119
|
syl |
|
| 121 |
1
|
ssrab3 |
|
| 122 |
|
nnuz |
|
| 123 |
121 122
|
sseqtri |
|
| 124 |
|
infssuzle |
|
| 125 |
123 124
|
mpan |
|
| 126 |
4 125
|
eqbrtrid |
|
| 127 |
120 126
|
syl6 |
|
| 128 |
46 127
|
mtod |
|
| 129 |
|
elnn0 |
|
| 130 |
41 129
|
sylib |
|
| 131 |
130
|
ord |
|
| 132 |
128 131
|
mpd |
|
| 133 |
|
dvdsval3 |
|
| 134 |
40 39 133
|
syl2anc |
|
| 135 |
132 134
|
mpbird |
|
| 136 |
135
|
ex |
|