| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bezout.1 |
|
| 2 |
|
bezout.3 |
|
| 3 |
|
bezout.4 |
|
| 4 |
|
bezout.2 |
|
| 5 |
|
bezout.5 |
|
| 6 |
|
gcddvds |
|
| 7 |
2 3 6
|
syl2anc |
|
| 8 |
7
|
simpld |
|
| 9 |
2 3
|
gcdcld |
|
| 10 |
9
|
nn0zd |
|
| 11 |
|
divides |
|
| 12 |
10 2 11
|
syl2anc |
|
| 13 |
8 12
|
mpbid |
|
| 14 |
7
|
simprd |
|
| 15 |
|
divides |
|
| 16 |
10 3 15
|
syl2anc |
|
| 17 |
14 16
|
mpbid |
|
| 18 |
|
reeanv |
|
| 19 |
1 2 3 4 5
|
bezoutlem2 |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
oveq1d |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
eqeq2d |
|
| 26 |
22 25
|
cbvrex2vw |
|
| 27 |
|
eqeq1 |
|
| 28 |
27
|
2rexbidv |
|
| 29 |
26 28
|
bitrid |
|
| 30 |
29 1
|
elrab2 |
|
| 31 |
19 30
|
sylib |
|
| 32 |
31
|
simprd |
|
| 33 |
|
simprrl |
|
| 34 |
|
simprll |
|
| 35 |
33 34
|
zmulcld |
|
| 36 |
|
simprrr |
|
| 37 |
|
simprlr |
|
| 38 |
36 37
|
zmulcld |
|
| 39 |
35 38
|
zaddcld |
|
| 40 |
10
|
adantr |
|
| 41 |
|
dvdsmul2 |
|
| 42 |
39 40 41
|
syl2anc |
|
| 43 |
35
|
zcnd |
|
| 44 |
40
|
zcnd |
|
| 45 |
38
|
zcnd |
|
| 46 |
33
|
zcnd |
|
| 47 |
34
|
zcnd |
|
| 48 |
46 47 44
|
mul32d |
|
| 49 |
36
|
zcnd |
|
| 50 |
37
|
zcnd |
|
| 51 |
49 50 44
|
mul32d |
|
| 52 |
48 51
|
oveq12d |
|
| 53 |
43 44 45 52
|
joinlmuladdmuld |
|
| 54 |
42 53
|
breqtrd |
|
| 55 |
|
oveq1 |
|
| 56 |
|
oveq1 |
|
| 57 |
55 56
|
oveqan12d |
|
| 58 |
57
|
breq2d |
|
| 59 |
54 58
|
syl5ibcom |
|
| 60 |
|
breq2 |
|
| 61 |
60
|
imbi2d |
|
| 62 |
59 61
|
syl5ibrcom |
|
| 63 |
62
|
expr |
|
| 64 |
63
|
com23 |
|
| 65 |
64
|
rexlimdvva |
|
| 66 |
32 65
|
mpd |
|
| 67 |
66
|
rexlimdvv |
|
| 68 |
18 67
|
biimtrrid |
|
| 69 |
13 17 68
|
mp2and |
|
| 70 |
31
|
simpld |
|
| 71 |
|
dvdsle |
|
| 72 |
10 70 71
|
syl2anc |
|
| 73 |
69 72
|
mpd |
|
| 74 |
|
breq2 |
|
| 75 |
1 2 3
|
bezoutlem1 |
|
| 76 |
1 2 3 4 5
|
bezoutlem3 |
|
| 77 |
75 76
|
syld |
|
| 78 |
70
|
nnzd |
|
| 79 |
|
dvdsabsb |
|
| 80 |
78 2 79
|
syl2anc |
|
| 81 |
77 80
|
sylibrd |
|
| 82 |
81
|
imp |
|
| 83 |
|
dvds0 |
|
| 84 |
78 83
|
syl |
|
| 85 |
74 82 84
|
pm2.61ne |
|
| 86 |
|
breq2 |
|
| 87 |
|
eqid |
|
| 88 |
87 3 2
|
bezoutlem1 |
|
| 89 |
|
rexcom |
|
| 90 |
2
|
zcnd |
|
| 91 |
90
|
adantr |
|
| 92 |
|
zcn |
|
| 93 |
92
|
ad2antll |
|
| 94 |
91 93
|
mulcld |
|
| 95 |
3
|
zcnd |
|
| 96 |
95
|
adantr |
|
| 97 |
|
zcn |
|
| 98 |
97
|
ad2antrl |
|
| 99 |
96 98
|
mulcld |
|
| 100 |
94 99
|
addcomd |
|
| 101 |
100
|
eqeq2d |
|
| 102 |
101
|
2rexbidva |
|
| 103 |
89 102
|
bitrid |
|
| 104 |
103
|
rabbidv |
|
| 105 |
1 104
|
eqtrid |
|
| 106 |
105
|
eleq2d |
|
| 107 |
88 106
|
sylibrd |
|
| 108 |
1 2 3 4 5
|
bezoutlem3 |
|
| 109 |
107 108
|
syld |
|
| 110 |
|
dvdsabsb |
|
| 111 |
78 3 110
|
syl2anc |
|
| 112 |
109 111
|
sylibrd |
|
| 113 |
112
|
imp |
|
| 114 |
86 113 84
|
pm2.61ne |
|
| 115 |
|
dvdslegcd |
|
| 116 |
78 2 3 5 115
|
syl31anc |
|
| 117 |
85 114 116
|
mp2and |
|
| 118 |
9
|
nn0red |
|
| 119 |
70
|
nnred |
|
| 120 |
118 119
|
letri3d |
|
| 121 |
73 117 120
|
mpbir2and |
|
| 122 |
121 19
|
eqeltrd |
|