| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bezout.1 |
⊢ 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } |
| 2 |
|
bezout.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 3 |
|
bezout.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 4 |
|
bezout.2 |
⊢ 𝐺 = inf ( 𝑀 , ℝ , < ) |
| 5 |
|
bezout.5 |
⊢ ( 𝜑 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 6 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 7 |
2 3 6
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 8 |
7
|
simpld |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 9 |
2 3
|
gcdcld |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
| 10 |
9
|
nn0zd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 11 |
|
divides |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
| 12 |
10 2 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
| 13 |
8 12
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) |
| 14 |
7
|
simprd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 15 |
|
divides |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
| 16 |
10 3 15
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
| 17 |
14 16
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) |
| 18 |
|
reeanv |
⊢ ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℤ ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ↔ ( ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) ) |
| 19 |
1 2 3 4 5
|
bezoutlem2 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑀 ) |
| 20 |
|
oveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑢 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ) |
| 22 |
21
|
eqeq2d |
⊢ ( 𝑥 = 𝑢 → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝐵 · 𝑦 ) = ( 𝐵 · 𝑣 ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 25 |
24
|
eqeq2d |
⊢ ( 𝑦 = 𝑣 → ( 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 26 |
22 25
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 27 |
|
eqeq1 |
⊢ ( 𝑧 = 𝐺 → ( 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ↔ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 28 |
27
|
2rexbidv |
⊢ ( 𝑧 = 𝐺 → ( ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 29 |
26 28
|
bitrid |
⊢ ( 𝑧 = 𝐺 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 30 |
29 1
|
elrab2 |
⊢ ( 𝐺 ∈ 𝑀 ↔ ( 𝐺 ∈ ℕ ∧ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 31 |
19 30
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ ℕ ∧ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 32 |
31
|
simprd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 33 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑠 ∈ ℤ ) |
| 34 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑢 ∈ ℤ ) |
| 35 |
33 34
|
zmulcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝑠 · 𝑢 ) ∈ ℤ ) |
| 36 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑡 ∈ ℤ ) |
| 37 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑣 ∈ ℤ ) |
| 38 |
36 37
|
zmulcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝑡 · 𝑣 ) ∈ ℤ ) |
| 39 |
35 38
|
zaddcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) ∈ ℤ ) |
| 40 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 41 |
|
dvdsmul2 |
⊢ ( ( ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) · ( 𝐴 gcd 𝐵 ) ) ) |
| 42 |
39 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) · ( 𝐴 gcd 𝐵 ) ) ) |
| 43 |
35
|
zcnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝑠 · 𝑢 ) ∈ ℂ ) |
| 44 |
40
|
zcnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 45 |
38
|
zcnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝑡 · 𝑣 ) ∈ ℂ ) |
| 46 |
33
|
zcnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑠 ∈ ℂ ) |
| 47 |
34
|
zcnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑢 ∈ ℂ ) |
| 48 |
46 47 44
|
mul32d |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( 𝑠 · 𝑢 ) · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) ) |
| 49 |
36
|
zcnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑡 ∈ ℂ ) |
| 50 |
37
|
zcnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → 𝑣 ∈ ℂ ) |
| 51 |
49 50 44
|
mul32d |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( 𝑡 · 𝑣 ) · ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) |
| 52 |
48 51
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( ( 𝑠 · 𝑢 ) · ( 𝐴 gcd 𝐵 ) ) + ( ( 𝑡 · 𝑣 ) · ( 𝐴 gcd 𝐵 ) ) ) = ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) ) |
| 53 |
43 44 45 52
|
joinlmuladdmuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( ( 𝑠 · 𝑢 ) + ( 𝑡 · 𝑣 ) ) · ( 𝐴 gcd 𝐵 ) ) = ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) ) |
| 54 |
42 53
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) ) |
| 55 |
|
oveq1 |
⊢ ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) = ( 𝐴 · 𝑢 ) ) |
| 56 |
|
oveq1 |
⊢ ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 → ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) = ( 𝐵 · 𝑣 ) ) |
| 57 |
55 56
|
oveqan12d |
⊢ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) |
| 58 |
57
|
breq2d |
⊢ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) ∥ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) · 𝑢 ) + ( ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) · 𝑣 ) ) ↔ ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 59 |
54 58
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 60 |
|
breq2 |
⊢ ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ↔ ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) |
| 61 |
60
|
imbi2d |
⊢ ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ↔ ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) ) ) ) |
| 62 |
59 61
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) ) ) → ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) |
| 63 |
62
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) ) |
| 64 |
63
|
com23 |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) → ( 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) ) |
| 65 |
64
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ 𝐺 = ( ( 𝐴 · 𝑢 ) + ( 𝐵 · 𝑣 ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) ) |
| 66 |
32 65
|
mpd |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) ) |
| 67 |
66
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℤ ( ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) |
| 68 |
18 67
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑠 ∈ ℤ ( 𝑠 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ∧ ∃ 𝑡 ∈ ℤ ( 𝑡 · ( 𝐴 gcd 𝐵 ) ) = 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) ) |
| 69 |
13 17 68
|
mp2and |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐺 ) |
| 70 |
31
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ ℕ ) |
| 71 |
|
dvdsle |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐺 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐺 → ( 𝐴 gcd 𝐵 ) ≤ 𝐺 ) ) |
| 72 |
10 70 71
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐺 → ( 𝐴 gcd 𝐵 ) ≤ 𝐺 ) ) |
| 73 |
69 72
|
mpd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ≤ 𝐺 ) |
| 74 |
|
breq2 |
⊢ ( 𝐴 = 0 → ( 𝐺 ∥ 𝐴 ↔ 𝐺 ∥ 0 ) ) |
| 75 |
1 2 3
|
bezoutlem1 |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 → ( abs ‘ 𝐴 ) ∈ 𝑀 ) ) |
| 76 |
1 2 3 4 5
|
bezoutlem3 |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ∈ 𝑀 → 𝐺 ∥ ( abs ‘ 𝐴 ) ) ) |
| 77 |
75 76
|
syld |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 → 𝐺 ∥ ( abs ‘ 𝐴 ) ) ) |
| 78 |
70
|
nnzd |
⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
| 79 |
|
dvdsabsb |
⊢ ( ( 𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐺 ∥ 𝐴 ↔ 𝐺 ∥ ( abs ‘ 𝐴 ) ) ) |
| 80 |
78 2 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∥ 𝐴 ↔ 𝐺 ∥ ( abs ‘ 𝐴 ) ) ) |
| 81 |
77 80
|
sylibrd |
⊢ ( 𝜑 → ( 𝐴 ≠ 0 → 𝐺 ∥ 𝐴 ) ) |
| 82 |
81
|
imp |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐺 ∥ 𝐴 ) |
| 83 |
|
dvds0 |
⊢ ( 𝐺 ∈ ℤ → 𝐺 ∥ 0 ) |
| 84 |
78 83
|
syl |
⊢ ( 𝜑 → 𝐺 ∥ 0 ) |
| 85 |
74 82 84
|
pm2.61ne |
⊢ ( 𝜑 → 𝐺 ∥ 𝐴 ) |
| 86 |
|
breq2 |
⊢ ( 𝐵 = 0 → ( 𝐺 ∥ 𝐵 ↔ 𝐺 ∥ 0 ) ) |
| 87 |
|
eqid |
⊢ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } |
| 88 |
87 3 2
|
bezoutlem1 |
⊢ ( 𝜑 → ( 𝐵 ≠ 0 → ( abs ‘ 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) ) |
| 89 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ) |
| 90 |
2
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝐴 ∈ ℂ ) |
| 92 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 93 |
92
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝑥 ∈ ℂ ) |
| 94 |
91 93
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 95 |
3
|
zcnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝐵 ∈ ℂ ) |
| 97 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
| 98 |
97
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → 𝑦 ∈ ℂ ) |
| 99 |
96 98
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝐵 · 𝑦 ) ∈ ℂ ) |
| 100 |
94 99
|
addcomd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) |
| 101 |
100
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) ) → ( 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 102 |
101
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 103 |
89 102
|
bitrid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) ) ) |
| 104 |
103
|
rabbidv |
⊢ ( 𝜑 → { 𝑧 ∈ ℕ ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝐴 · 𝑥 ) + ( 𝐵 · 𝑦 ) ) } = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) |
| 105 |
1 104
|
eqtrid |
⊢ ( 𝜑 → 𝑀 = { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) |
| 106 |
105
|
eleq2d |
⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ∈ 𝑀 ↔ ( abs ‘ 𝐵 ) ∈ { 𝑧 ∈ ℕ ∣ ∃ 𝑦 ∈ ℤ ∃ 𝑥 ∈ ℤ 𝑧 = ( ( 𝐵 · 𝑦 ) + ( 𝐴 · 𝑥 ) ) } ) ) |
| 107 |
88 106
|
sylibrd |
⊢ ( 𝜑 → ( 𝐵 ≠ 0 → ( abs ‘ 𝐵 ) ∈ 𝑀 ) ) |
| 108 |
1 2 3 4 5
|
bezoutlem3 |
⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) ∈ 𝑀 → 𝐺 ∥ ( abs ‘ 𝐵 ) ) ) |
| 109 |
107 108
|
syld |
⊢ ( 𝜑 → ( 𝐵 ≠ 0 → 𝐺 ∥ ( abs ‘ 𝐵 ) ) ) |
| 110 |
|
dvdsabsb |
⊢ ( ( 𝐺 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐺 ∥ 𝐵 ↔ 𝐺 ∥ ( abs ‘ 𝐵 ) ) ) |
| 111 |
78 3 110
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∥ 𝐵 ↔ 𝐺 ∥ ( abs ‘ 𝐵 ) ) ) |
| 112 |
109 111
|
sylibrd |
⊢ ( 𝜑 → ( 𝐵 ≠ 0 → 𝐺 ∥ 𝐵 ) ) |
| 113 |
112
|
imp |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 0 ) → 𝐺 ∥ 𝐵 ) |
| 114 |
86 113 84
|
pm2.61ne |
⊢ ( 𝜑 → 𝐺 ∥ 𝐵 ) |
| 115 |
|
dvdslegcd |
⊢ ( ( ( 𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐺 ∥ 𝐴 ∧ 𝐺 ∥ 𝐵 ) → 𝐺 ≤ ( 𝐴 gcd 𝐵 ) ) ) |
| 116 |
78 2 3 5 115
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝐺 ∥ 𝐴 ∧ 𝐺 ∥ 𝐵 ) → 𝐺 ≤ ( 𝐴 gcd 𝐵 ) ) ) |
| 117 |
85 114 116
|
mp2and |
⊢ ( 𝜑 → 𝐺 ≤ ( 𝐴 gcd 𝐵 ) ) |
| 118 |
9
|
nn0red |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) |
| 119 |
70
|
nnred |
⊢ ( 𝜑 → 𝐺 ∈ ℝ ) |
| 120 |
118 119
|
letri3d |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) = 𝐺 ↔ ( ( 𝐴 gcd 𝐵 ) ≤ 𝐺 ∧ 𝐺 ≤ ( 𝐴 gcd 𝐵 ) ) ) ) |
| 121 |
73 117 120
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 𝐺 ) |
| 122 |
121 19
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ 𝑀 ) |