| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( k e. NN0 |-> ( bits ` k ) ) = ( k e. NN0 |-> ( bits ` k ) ) |
| 2 |
|
bitsss |
|- ( bits ` k ) C_ NN0 |
| 3 |
2
|
a1i |
|- ( k e. NN0 -> ( bits ` k ) C_ NN0 ) |
| 4 |
|
bitsfi |
|- ( k e. NN0 -> ( bits ` k ) e. Fin ) |
| 5 |
|
elfpw |
|- ( ( bits ` k ) e. ( ~P NN0 i^i Fin ) <-> ( ( bits ` k ) C_ NN0 /\ ( bits ` k ) e. Fin ) ) |
| 6 |
3 4 5
|
sylanbrc |
|- ( k e. NN0 -> ( bits ` k ) e. ( ~P NN0 i^i Fin ) ) |
| 7 |
6
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( bits ` k ) e. ( ~P NN0 i^i Fin ) ) |
| 8 |
|
elinel2 |
|- ( x e. ( ~P NN0 i^i Fin ) -> x e. Fin ) |
| 9 |
|
2nn0 |
|- 2 e. NN0 |
| 10 |
9
|
a1i |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ n e. x ) -> 2 e. NN0 ) |
| 11 |
|
elfpw |
|- ( x e. ( ~P NN0 i^i Fin ) <-> ( x C_ NN0 /\ x e. Fin ) ) |
| 12 |
11
|
simplbi |
|- ( x e. ( ~P NN0 i^i Fin ) -> x C_ NN0 ) |
| 13 |
12
|
sselda |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ n e. x ) -> n e. NN0 ) |
| 14 |
10 13
|
nn0expcld |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ n e. x ) -> ( 2 ^ n ) e. NN0 ) |
| 15 |
8 14
|
fsumnn0cl |
|- ( x e. ( ~P NN0 i^i Fin ) -> sum_ n e. x ( 2 ^ n ) e. NN0 ) |
| 16 |
15
|
adantl |
|- ( ( T. /\ x e. ( ~P NN0 i^i Fin ) ) -> sum_ n e. x ( 2 ^ n ) e. NN0 ) |
| 17 |
|
bitsinv2 |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( bits ` sum_ n e. x ( 2 ^ n ) ) = x ) |
| 18 |
17
|
eqcomd |
|- ( x e. ( ~P NN0 i^i Fin ) -> x = ( bits ` sum_ n e. x ( 2 ^ n ) ) ) |
| 19 |
18
|
ad2antll |
|- ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> x = ( bits ` sum_ n e. x ( 2 ^ n ) ) ) |
| 20 |
|
fveq2 |
|- ( k = sum_ n e. x ( 2 ^ n ) -> ( bits ` k ) = ( bits ` sum_ n e. x ( 2 ^ n ) ) ) |
| 21 |
20
|
eqeq2d |
|- ( k = sum_ n e. x ( 2 ^ n ) -> ( x = ( bits ` k ) <-> x = ( bits ` sum_ n e. x ( 2 ^ n ) ) ) ) |
| 22 |
19 21
|
syl5ibrcom |
|- ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> ( k = sum_ n e. x ( 2 ^ n ) -> x = ( bits ` k ) ) ) |
| 23 |
|
bitsinv1 |
|- ( k e. NN0 -> sum_ n e. ( bits ` k ) ( 2 ^ n ) = k ) |
| 24 |
23
|
eqcomd |
|- ( k e. NN0 -> k = sum_ n e. ( bits ` k ) ( 2 ^ n ) ) |
| 25 |
24
|
ad2antrl |
|- ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> k = sum_ n e. ( bits ` k ) ( 2 ^ n ) ) |
| 26 |
|
sumeq1 |
|- ( x = ( bits ` k ) -> sum_ n e. x ( 2 ^ n ) = sum_ n e. ( bits ` k ) ( 2 ^ n ) ) |
| 27 |
26
|
eqeq2d |
|- ( x = ( bits ` k ) -> ( k = sum_ n e. x ( 2 ^ n ) <-> k = sum_ n e. ( bits ` k ) ( 2 ^ n ) ) ) |
| 28 |
25 27
|
syl5ibrcom |
|- ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> ( x = ( bits ` k ) -> k = sum_ n e. x ( 2 ^ n ) ) ) |
| 29 |
22 28
|
impbid |
|- ( ( T. /\ ( k e. NN0 /\ x e. ( ~P NN0 i^i Fin ) ) ) -> ( k = sum_ n e. x ( 2 ^ n ) <-> x = ( bits ` k ) ) ) |
| 30 |
1 7 16 29
|
f1ocnv2d |
|- ( T. -> ( ( k e. NN0 |-> ( bits ` k ) ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ `' ( k e. NN0 |-> ( bits ` k ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) ) |
| 31 |
30
|
simpld |
|- ( T. -> ( k e. NN0 |-> ( bits ` k ) ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) ) |
| 32 |
|
bitsf |
|- bits : ZZ --> ~P NN0 |
| 33 |
32
|
a1i |
|- ( T. -> bits : ZZ --> ~P NN0 ) |
| 34 |
33
|
feqmptd |
|- ( T. -> bits = ( k e. ZZ |-> ( bits ` k ) ) ) |
| 35 |
34
|
reseq1d |
|- ( T. -> ( bits |` NN0 ) = ( ( k e. ZZ |-> ( bits ` k ) ) |` NN0 ) ) |
| 36 |
|
nn0ssz |
|- NN0 C_ ZZ |
| 37 |
|
resmpt |
|- ( NN0 C_ ZZ -> ( ( k e. ZZ |-> ( bits ` k ) ) |` NN0 ) = ( k e. NN0 |-> ( bits ` k ) ) ) |
| 38 |
36 37
|
ax-mp |
|- ( ( k e. ZZ |-> ( bits ` k ) ) |` NN0 ) = ( k e. NN0 |-> ( bits ` k ) ) |
| 39 |
35 38
|
eqtrdi |
|- ( T. -> ( bits |` NN0 ) = ( k e. NN0 |-> ( bits ` k ) ) ) |
| 40 |
39
|
f1oeq1d |
|- ( T. -> ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) <-> ( k e. NN0 |-> ( bits ` k ) ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) ) ) |
| 41 |
31 40
|
mpbird |
|- ( T. -> ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) ) |
| 42 |
39
|
cnveqd |
|- ( T. -> `' ( bits |` NN0 ) = `' ( k e. NN0 |-> ( bits ` k ) ) ) |
| 43 |
30
|
simprd |
|- ( T. -> `' ( k e. NN0 |-> ( bits ` k ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) |
| 44 |
42 43
|
eqtrd |
|- ( T. -> `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) |
| 45 |
41 44
|
jca |
|- ( T. -> ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) ) |
| 46 |
45
|
mptru |
|- ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ `' ( bits |` NN0 ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ n e. x ( 2 ^ n ) ) ) |