| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbijnn.1 |
|- F = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ y e. x ( 2 ^ y ) ) |
| 2 |
|
hashgval2 |
|- ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
| 3 |
2
|
hashgf1o |
|- ( # |` _om ) : _om -1-1-onto-> NN0 |
| 4 |
|
sneq |
|- ( w = y -> { w } = { y } ) |
| 5 |
|
pweq |
|- ( w = y -> ~P w = ~P y ) |
| 6 |
4 5
|
xpeq12d |
|- ( w = y -> ( { w } X. ~P w ) = ( { y } X. ~P y ) ) |
| 7 |
6
|
cbviunv |
|- U_ w e. z ( { w } X. ~P w ) = U_ y e. z ( { y } X. ~P y ) |
| 8 |
|
iuneq1 |
|- ( z = x -> U_ y e. z ( { y } X. ~P y ) = U_ y e. x ( { y } X. ~P y ) ) |
| 9 |
7 8
|
eqtrid |
|- ( z = x -> U_ w e. z ( { w } X. ~P w ) = U_ y e. x ( { y } X. ~P y ) ) |
| 10 |
9
|
fveq2d |
|- ( z = x -> ( card ` U_ w e. z ( { w } X. ~P w ) ) = ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 11 |
10
|
cbvmptv |
|- ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 12 |
11
|
ackbij1 |
|- ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om |
| 13 |
|
f1ocnv |
|- ( ( # |` _om ) : _om -1-1-onto-> NN0 -> `' ( # |` _om ) : NN0 -1-1-onto-> _om ) |
| 14 |
3 13
|
ax-mp |
|- `' ( # |` _om ) : NN0 -1-1-onto-> _om |
| 15 |
|
f1opwfi |
|- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) ) |
| 16 |
14 15
|
ax-mp |
|- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) |
| 17 |
|
f1oco |
|- ( ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om /\ ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) ) -> ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om ) |
| 18 |
12 16 17
|
mp2an |
|- ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om |
| 19 |
|
f1oco |
|- ( ( ( # |` _om ) : _om -1-1-onto-> NN0 /\ ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om ) -> ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
| 20 |
3 18 19
|
mp2an |
|- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 |
| 21 |
|
inss2 |
|- ( ~P _om i^i Fin ) C_ Fin |
| 22 |
|
f1of |
|- ( ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) ) |
| 23 |
16 22
|
ax-mp |
|- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) |
| 24 |
|
eqid |
|- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) |
| 25 |
24
|
fmpt |
|- ( A. x e. ( ~P NN0 i^i Fin ) ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) <-> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) ) |
| 26 |
23 25
|
mpbir |
|- A. x e. ( ~P NN0 i^i Fin ) ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) |
| 27 |
26
|
rspec |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) ) |
| 28 |
21 27
|
sselid |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) " x ) e. Fin ) |
| 29 |
|
snfi |
|- { w } e. Fin |
| 30 |
|
cnvimass |
|- ( `' ( # |` _om ) " x ) C_ dom ( # |` _om ) |
| 31 |
|
dmhashres |
|- dom ( # |` _om ) = _om |
| 32 |
30 31
|
sseqtri |
|- ( `' ( # |` _om ) " x ) C_ _om |
| 33 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
| 34 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
| 35 |
33 34
|
eqsstri |
|- _om C_ Fin |
| 36 |
32 35
|
sstri |
|- ( `' ( # |` _om ) " x ) C_ Fin |
| 37 |
|
simpr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> w e. ( `' ( # |` _om ) " x ) ) |
| 38 |
36 37
|
sselid |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> w e. Fin ) |
| 39 |
|
pwfi |
|- ( w e. Fin <-> ~P w e. Fin ) |
| 40 |
38 39
|
sylib |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ~P w e. Fin ) |
| 41 |
|
xpfi |
|- ( ( { w } e. Fin /\ ~P w e. Fin ) -> ( { w } X. ~P w ) e. Fin ) |
| 42 |
29 40 41
|
sylancr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ( { w } X. ~P w ) e. Fin ) |
| 43 |
42
|
ralrimiva |
|- ( x e. ( ~P NN0 i^i Fin ) -> A. w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
| 44 |
|
iunfi |
|- ( ( ( `' ( # |` _om ) " x ) e. Fin /\ A. w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) -> U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
| 45 |
28 43 44
|
syl2anc |
|- ( x e. ( ~P NN0 i^i Fin ) -> U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
| 46 |
|
ficardom |
|- ( U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
| 47 |
45 46
|
syl |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
| 48 |
47
|
fvresd |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
| 49 |
|
hashcard |
|- ( U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin -> ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
| 50 |
45 49
|
syl |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
| 51 |
|
xp1st |
|- ( z e. ( { w } X. ~P w ) -> ( 1st ` z ) e. { w } ) |
| 52 |
|
elsni |
|- ( ( 1st ` z ) e. { w } -> ( 1st ` z ) = w ) |
| 53 |
51 52
|
syl |
|- ( z e. ( { w } X. ~P w ) -> ( 1st ` z ) = w ) |
| 54 |
53
|
rgen |
|- A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w |
| 55 |
54
|
rgenw |
|- A. w e. ( `' ( # |` _om ) " x ) A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w |
| 56 |
|
invdisj |
|- ( A. w e. ( `' ( # |` _om ) " x ) A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w -> Disj_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
| 57 |
55 56
|
mp1i |
|- ( x e. ( ~P NN0 i^i Fin ) -> Disj_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
| 58 |
28 42 57
|
hashiun |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) = sum_ w e. ( `' ( # |` _om ) " x ) ( # ` ( { w } X. ~P w ) ) ) |
| 59 |
|
sneq |
|- ( w = ( `' ( # |` _om ) ` y ) -> { w } = { ( `' ( # |` _om ) ` y ) } ) |
| 60 |
|
pweq |
|- ( w = ( `' ( # |` _om ) ` y ) -> ~P w = ~P ( `' ( # |` _om ) ` y ) ) |
| 61 |
59 60
|
xpeq12d |
|- ( w = ( `' ( # |` _om ) ` y ) -> ( { w } X. ~P w ) = ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) |
| 62 |
61
|
fveq2d |
|- ( w = ( `' ( # |` _om ) ` y ) -> ( # ` ( { w } X. ~P w ) ) = ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) ) |
| 63 |
|
elinel2 |
|- ( x e. ( ~P NN0 i^i Fin ) -> x e. Fin ) |
| 64 |
|
f1of1 |
|- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> `' ( # |` _om ) : NN0 -1-1-> _om ) |
| 65 |
14 64
|
ax-mp |
|- `' ( # |` _om ) : NN0 -1-1-> _om |
| 66 |
|
elinel1 |
|- ( x e. ( ~P NN0 i^i Fin ) -> x e. ~P NN0 ) |
| 67 |
66
|
elpwid |
|- ( x e. ( ~P NN0 i^i Fin ) -> x C_ NN0 ) |
| 68 |
|
f1ores |
|- ( ( `' ( # |` _om ) : NN0 -1-1-> _om /\ x C_ NN0 ) -> ( `' ( # |` _om ) |` x ) : x -1-1-onto-> ( `' ( # |` _om ) " x ) ) |
| 69 |
65 67 68
|
sylancr |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) |` x ) : x -1-1-onto-> ( `' ( # |` _om ) " x ) ) |
| 70 |
|
fvres |
|- ( y e. x -> ( ( `' ( # |` _om ) |` x ) ` y ) = ( `' ( # |` _om ) ` y ) ) |
| 71 |
70
|
adantl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( `' ( # |` _om ) |` x ) ` y ) = ( `' ( # |` _om ) ` y ) ) |
| 72 |
|
hashcl |
|- ( ( { w } X. ~P w ) e. Fin -> ( # ` ( { w } X. ~P w ) ) e. NN0 ) |
| 73 |
|
nn0cn |
|- ( ( # ` ( { w } X. ~P w ) ) e. NN0 -> ( # ` ( { w } X. ~P w ) ) e. CC ) |
| 74 |
42 72 73
|
3syl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ( # ` ( { w } X. ~P w ) ) e. CC ) |
| 75 |
62 63 69 71 74
|
fsumf1o |
|- ( x e. ( ~P NN0 i^i Fin ) -> sum_ w e. ( `' ( # |` _om ) " x ) ( # ` ( { w } X. ~P w ) ) = sum_ y e. x ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) ) |
| 76 |
|
snfi |
|- { ( `' ( # |` _om ) ` y ) } e. Fin |
| 77 |
67
|
sselda |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> y e. NN0 ) |
| 78 |
|
f1of |
|- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> `' ( # |` _om ) : NN0 --> _om ) |
| 79 |
14 78
|
ax-mp |
|- `' ( # |` _om ) : NN0 --> _om |
| 80 |
79
|
ffvelcdmi |
|- ( y e. NN0 -> ( `' ( # |` _om ) ` y ) e. _om ) |
| 81 |
77 80
|
syl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( `' ( # |` _om ) ` y ) e. _om ) |
| 82 |
35 81
|
sselid |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( `' ( # |` _om ) ` y ) e. Fin ) |
| 83 |
|
pwfi |
|- ( ( `' ( # |` _om ) ` y ) e. Fin <-> ~P ( `' ( # |` _om ) ` y ) e. Fin ) |
| 84 |
82 83
|
sylib |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ~P ( `' ( # |` _om ) ` y ) e. Fin ) |
| 85 |
|
hashxp |
|- ( ( { ( `' ( # |` _om ) ` y ) } e. Fin /\ ~P ( `' ( # |` _om ) ` y ) e. Fin ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) ) |
| 86 |
76 84 85
|
sylancr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) ) |
| 87 |
|
hashsng |
|- ( ( `' ( # |` _om ) ` y ) e. _om -> ( # ` { ( `' ( # |` _om ) ` y ) } ) = 1 ) |
| 88 |
81 87
|
syl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` { ( `' ( # |` _om ) ` y ) } ) = 1 ) |
| 89 |
|
hashpw |
|- ( ( `' ( # |` _om ) ` y ) e. Fin -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) ) |
| 90 |
82 89
|
syl |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) ) |
| 91 |
81
|
fvresd |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = ( # ` ( `' ( # |` _om ) ` y ) ) ) |
| 92 |
|
f1ocnvfv2 |
|- ( ( ( # |` _om ) : _om -1-1-onto-> NN0 /\ y e. NN0 ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = y ) |
| 93 |
3 77 92
|
sylancr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = y ) |
| 94 |
91 93
|
eqtr3d |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( `' ( # |` _om ) ` y ) ) = y ) |
| 95 |
94
|
oveq2d |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) = ( 2 ^ y ) ) |
| 96 |
90 95
|
eqtrd |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ y ) ) |
| 97 |
88 96
|
oveq12d |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) = ( 1 x. ( 2 ^ y ) ) ) |
| 98 |
|
2cn |
|- 2 e. CC |
| 99 |
|
expcl |
|- ( ( 2 e. CC /\ y e. NN0 ) -> ( 2 ^ y ) e. CC ) |
| 100 |
98 77 99
|
sylancr |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 2 ^ y ) e. CC ) |
| 101 |
100
|
mullidd |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 1 x. ( 2 ^ y ) ) = ( 2 ^ y ) ) |
| 102 |
86 97 101
|
3eqtrd |
|- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( 2 ^ y ) ) |
| 103 |
102
|
sumeq2dv |
|- ( x e. ( ~P NN0 i^i Fin ) -> sum_ y e. x ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = sum_ y e. x ( 2 ^ y ) ) |
| 104 |
58 75 103
|
3eqtrd |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) = sum_ y e. x ( 2 ^ y ) ) |
| 105 |
48 50 104
|
3eqtrd |
|- ( x e. ( ~P NN0 i^i Fin ) -> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = sum_ y e. x ( 2 ^ y ) ) |
| 106 |
105
|
mpteq2ia |
|- ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ y e. x ( 2 ^ y ) ) |
| 107 |
47
|
adantl |
|- ( ( T. /\ x e. ( ~P NN0 i^i Fin ) ) -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
| 108 |
27
|
adantl |
|- ( ( T. /\ x e. ( ~P NN0 i^i Fin ) ) -> ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) ) |
| 109 |
|
eqidd |
|- ( T. -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) |
| 110 |
|
eqidd |
|- ( T. -> ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) = ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) ) |
| 111 |
|
iuneq1 |
|- ( z = ( `' ( # |` _om ) " x ) -> U_ w e. z ( { w } X. ~P w ) = U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
| 112 |
111
|
fveq2d |
|- ( z = ( `' ( # |` _om ) " x ) -> ( card ` U_ w e. z ( { w } X. ~P w ) ) = ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
| 113 |
108 109 110 112
|
fmptco |
|- ( T. -> ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
| 114 |
|
f1of |
|- ( ( # |` _om ) : _om -1-1-onto-> NN0 -> ( # |` _om ) : _om --> NN0 ) |
| 115 |
3 114
|
mp1i |
|- ( T. -> ( # |` _om ) : _om --> NN0 ) |
| 116 |
115
|
feqmptd |
|- ( T. -> ( # |` _om ) = ( y e. _om |-> ( ( # |` _om ) ` y ) ) ) |
| 117 |
|
fveq2 |
|- ( y = ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) -> ( ( # |` _om ) ` y ) = ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
| 118 |
107 113 116 117
|
fmptco |
|- ( T. -> ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) ) |
| 119 |
118
|
mptru |
|- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
| 120 |
106 119 1
|
3eqtr4i |
|- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = F |
| 121 |
|
f1oeq1 |
|- ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = F -> ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 <-> F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) ) |
| 122 |
120 121
|
ax-mp |
|- ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 <-> F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
| 123 |
20 122
|
mpbi |
|- F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 |