Step |
Hyp |
Ref |
Expression |
1 |
|
onintrab2 |
|- ( E. x e. On A ~< x <-> |^| { x e. On | A ~< x } e. On ) |
2 |
1
|
biimpi |
|- ( E. x e. On A ~< x -> |^| { x e. On | A ~< x } e. On ) |
3 |
2
|
adantr |
|- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> |^| { x e. On | A ~< x } e. On ) |
4 |
|
eloni |
|- ( |^| { x e. On | A ~< x } e. On -> Ord |^| { x e. On | A ~< x } ) |
5 |
|
ordelss |
|- ( ( Ord |^| { x e. On | A ~< x } /\ y e. |^| { x e. On | A ~< x } ) -> y C_ |^| { x e. On | A ~< x } ) |
6 |
4 5
|
sylan |
|- ( ( |^| { x e. On | A ~< x } e. On /\ y e. |^| { x e. On | A ~< x } ) -> y C_ |^| { x e. On | A ~< x } ) |
7 |
1 6
|
sylanb |
|- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> y C_ |^| { x e. On | A ~< x } ) |
8 |
|
ssdomg |
|- ( |^| { x e. On | A ~< x } e. On -> ( y C_ |^| { x e. On | A ~< x } -> y ~<_ |^| { x e. On | A ~< x } ) ) |
9 |
3 7 8
|
sylc |
|- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> y ~<_ |^| { x e. On | A ~< x } ) |
10 |
|
onelon |
|- ( ( |^| { x e. On | A ~< x } e. On /\ y e. |^| { x e. On | A ~< x } ) -> y e. On ) |
11 |
1 10
|
sylanb |
|- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> y e. On ) |
12 |
|
nfcv |
|- F/_ x A |
13 |
|
nfcv |
|- F/_ x ~< |
14 |
|
nfrab1 |
|- F/_ x { x e. On | A ~< x } |
15 |
14
|
nfint |
|- F/_ x |^| { x e. On | A ~< x } |
16 |
12 13 15
|
nfbr |
|- F/ x A ~< |^| { x e. On | A ~< x } |
17 |
|
breq2 |
|- ( x = |^| { x e. On | A ~< x } -> ( A ~< x <-> A ~< |^| { x e. On | A ~< x } ) ) |
18 |
16 17
|
onminsb |
|- ( E. x e. On A ~< x -> A ~< |^| { x e. On | A ~< x } ) |
19 |
|
sdomentr |
|- ( ( A ~< |^| { x e. On | A ~< x } /\ |^| { x e. On | A ~< x } ~~ y ) -> A ~< y ) |
20 |
18 19
|
sylan |
|- ( ( E. x e. On A ~< x /\ |^| { x e. On | A ~< x } ~~ y ) -> A ~< y ) |
21 |
|
breq2 |
|- ( x = y -> ( A ~< x <-> A ~< y ) ) |
22 |
21
|
elrab |
|- ( y e. { x e. On | A ~< x } <-> ( y e. On /\ A ~< y ) ) |
23 |
|
ssrab2 |
|- { x e. On | A ~< x } C_ On |
24 |
|
onnmin |
|- ( ( { x e. On | A ~< x } C_ On /\ y e. { x e. On | A ~< x } ) -> -. y e. |^| { x e. On | A ~< x } ) |
25 |
23 24
|
mpan |
|- ( y e. { x e. On | A ~< x } -> -. y e. |^| { x e. On | A ~< x } ) |
26 |
22 25
|
sylbir |
|- ( ( y e. On /\ A ~< y ) -> -. y e. |^| { x e. On | A ~< x } ) |
27 |
26
|
expcom |
|- ( A ~< y -> ( y e. On -> -. y e. |^| { x e. On | A ~< x } ) ) |
28 |
20 27
|
syl |
|- ( ( E. x e. On A ~< x /\ |^| { x e. On | A ~< x } ~~ y ) -> ( y e. On -> -. y e. |^| { x e. On | A ~< x } ) ) |
29 |
28
|
impancom |
|- ( ( E. x e. On A ~< x /\ y e. On ) -> ( |^| { x e. On | A ~< x } ~~ y -> -. y e. |^| { x e. On | A ~< x } ) ) |
30 |
29
|
con2d |
|- ( ( E. x e. On A ~< x /\ y e. On ) -> ( y e. |^| { x e. On | A ~< x } -> -. |^| { x e. On | A ~< x } ~~ y ) ) |
31 |
30
|
impancom |
|- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> ( y e. On -> -. |^| { x e. On | A ~< x } ~~ y ) ) |
32 |
11 31
|
mpd |
|- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> -. |^| { x e. On | A ~< x } ~~ y ) |
33 |
|
ensym |
|- ( y ~~ |^| { x e. On | A ~< x } -> |^| { x e. On | A ~< x } ~~ y ) |
34 |
32 33
|
nsyl |
|- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> -. y ~~ |^| { x e. On | A ~< x } ) |
35 |
|
brsdom |
|- ( y ~< |^| { x e. On | A ~< x } <-> ( y ~<_ |^| { x e. On | A ~< x } /\ -. y ~~ |^| { x e. On | A ~< x } ) ) |
36 |
9 34 35
|
sylanbrc |
|- ( ( E. x e. On A ~< x /\ y e. |^| { x e. On | A ~< x } ) -> y ~< |^| { x e. On | A ~< x } ) |
37 |
36
|
ralrimiva |
|- ( E. x e. On A ~< x -> A. y e. |^| { x e. On | A ~< x } y ~< |^| { x e. On | A ~< x } ) |
38 |
|
iscard |
|- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } <-> ( |^| { x e. On | A ~< x } e. On /\ A. y e. |^| { x e. On | A ~< x } y ~< |^| { x e. On | A ~< x } ) ) |
39 |
2 37 38
|
sylanbrc |
|- ( E. x e. On A ~< x -> ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |
40 |
|
vprc |
|- -. _V e. _V |
41 |
|
inteq |
|- ( { x e. On | A ~< x } = (/) -> |^| { x e. On | A ~< x } = |^| (/) ) |
42 |
|
int0 |
|- |^| (/) = _V |
43 |
41 42
|
eqtrdi |
|- ( { x e. On | A ~< x } = (/) -> |^| { x e. On | A ~< x } = _V ) |
44 |
43
|
eleq1d |
|- ( { x e. On | A ~< x } = (/) -> ( |^| { x e. On | A ~< x } e. _V <-> _V e. _V ) ) |
45 |
40 44
|
mtbiri |
|- ( { x e. On | A ~< x } = (/) -> -. |^| { x e. On | A ~< x } e. _V ) |
46 |
|
fvex |
|- ( card ` |^| { x e. On | A ~< x } ) e. _V |
47 |
|
eleq1 |
|- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } -> ( ( card ` |^| { x e. On | A ~< x } ) e. _V <-> |^| { x e. On | A ~< x } e. _V ) ) |
48 |
46 47
|
mpbii |
|- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } -> |^| { x e. On | A ~< x } e. _V ) |
49 |
45 48
|
nsyl |
|- ( { x e. On | A ~< x } = (/) -> -. ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |
50 |
49
|
necon2ai |
|- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } -> { x e. On | A ~< x } =/= (/) ) |
51 |
|
rabn0 |
|- ( { x e. On | A ~< x } =/= (/) <-> E. x e. On A ~< x ) |
52 |
50 51
|
sylib |
|- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } -> E. x e. On A ~< x ) |
53 |
39 52
|
impbii |
|- ( E. x e. On A ~< x <-> ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |