| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onintrab2 |
|
| 2 |
1
|
biimpi |
|
| 3 |
2
|
adantr |
|
| 4 |
|
eloni |
|
| 5 |
|
ordelss |
|
| 6 |
4 5
|
sylan |
|
| 7 |
1 6
|
sylanb |
|
| 8 |
|
ssdomg |
|
| 9 |
3 7 8
|
sylc |
|
| 10 |
|
onelon |
|
| 11 |
1 10
|
sylanb |
|
| 12 |
|
nfcv |
|
| 13 |
|
nfcv |
|
| 14 |
|
nfrab1 |
|
| 15 |
14
|
nfint |
|
| 16 |
12 13 15
|
nfbr |
|
| 17 |
|
breq2 |
|
| 18 |
16 17
|
onminsb |
|
| 19 |
|
sdomentr |
|
| 20 |
18 19
|
sylan |
|
| 21 |
|
breq2 |
|
| 22 |
21
|
elrab |
|
| 23 |
|
ssrab2 |
|
| 24 |
|
onnmin |
|
| 25 |
23 24
|
mpan |
|
| 26 |
22 25
|
sylbir |
|
| 27 |
26
|
expcom |
|
| 28 |
20 27
|
syl |
|
| 29 |
28
|
impancom |
|
| 30 |
29
|
con2d |
|
| 31 |
30
|
impancom |
|
| 32 |
11 31
|
mpd |
|
| 33 |
|
ensym |
|
| 34 |
32 33
|
nsyl |
|
| 35 |
|
brsdom |
|
| 36 |
9 34 35
|
sylanbrc |
|
| 37 |
36
|
ralrimiva |
|
| 38 |
|
iscard |
|
| 39 |
2 37 38
|
sylanbrc |
|
| 40 |
|
vprc |
|
| 41 |
|
inteq |
|
| 42 |
|
int0 |
|
| 43 |
41 42
|
eqtrdi |
|
| 44 |
43
|
eleq1d |
|
| 45 |
40 44
|
mtbiri |
|
| 46 |
|
fvex |
|
| 47 |
|
eleq1 |
|
| 48 |
46 47
|
mpbii |
|
| 49 |
45 48
|
nsyl |
|
| 50 |
49
|
necon2ai |
|
| 51 |
|
rabn0 |
|
| 52 |
50 51
|
sylib |
|
| 53 |
39 52
|
impbii |
|