Description: The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | cardmin2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onintrab2 | |
|
2 | 1 | biimpi | |
3 | 2 | adantr | |
4 | eloni | |
|
5 | ordelss | |
|
6 | 4 5 | sylan | |
7 | 1 6 | sylanb | |
8 | ssdomg | |
|
9 | 3 7 8 | sylc | |
10 | onelon | |
|
11 | 1 10 | sylanb | |
12 | nfcv | |
|
13 | nfcv | |
|
14 | nfrab1 | |
|
15 | 14 | nfint | |
16 | 12 13 15 | nfbr | |
17 | breq2 | |
|
18 | 16 17 | onminsb | |
19 | sdomentr | |
|
20 | 18 19 | sylan | |
21 | breq2 | |
|
22 | 21 | elrab | |
23 | ssrab2 | |
|
24 | onnmin | |
|
25 | 23 24 | mpan | |
26 | 22 25 | sylbir | |
27 | 26 | expcom | |
28 | 20 27 | syl | |
29 | 28 | impancom | |
30 | 29 | con2d | |
31 | 30 | impancom | |
32 | 11 31 | mpd | |
33 | ensym | |
|
34 | 32 33 | nsyl | |
35 | brsdom | |
|
36 | 9 34 35 | sylanbrc | |
37 | 36 | ralrimiva | |
38 | iscard | |
|
39 | 2 37 38 | sylanbrc | |
40 | vprc | |
|
41 | inteq | |
|
42 | int0 | |
|
43 | 41 42 | eqtrdi | |
44 | 43 | eleq1d | |
45 | 40 44 | mtbiri | |
46 | fvex | |
|
47 | eleq1 | |
|
48 | 46 47 | mpbii | |
49 | 45 48 | nsyl | |
50 | 49 | necon2ai | |
51 | rabn0 | |
|
52 | 50 51 | sylib | |
53 | 39 52 | impbii | |