| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme8.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme8.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme8.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme8.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme8.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme8.4 |
|- C = ( ( P .\/ S ) ./\ W ) |
| 7 |
6
|
oveq2i |
|- ( P .\/ C ) = ( P .\/ ( ( P .\/ S ) ./\ W ) ) |
| 8 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> K e. HL ) |
| 9 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> P e. A ) |
| 10 |
8
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> K e. Lat ) |
| 11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 12 |
11 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 13 |
9 12
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> P e. ( Base ` K ) ) |
| 14 |
11 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 15 |
14
|
3ad2ant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> S e. ( Base ` K ) ) |
| 16 |
11 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 17 |
10 13 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 18 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> W e. H ) |
| 19 |
11 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 20 |
18 19
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> W e. ( Base ` K ) ) |
| 21 |
11 1 2
|
latlej1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> P .<_ ( P .\/ S ) ) |
| 22 |
10 13 15 21
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> P .<_ ( P .\/ S ) ) |
| 23 |
11 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( P .\/ ( ( P .\/ S ) ./\ W ) ) = ( ( P .\/ S ) ./\ ( P .\/ W ) ) ) |
| 24 |
8 9 17 20 22 23
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ ( ( P .\/ S ) ./\ W ) ) = ( ( P .\/ S ) ./\ ( P .\/ W ) ) ) |
| 25 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 26 |
1 2 25 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
| 27 |
26
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ W ) = ( 1. ` K ) ) |
| 28 |
27
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( ( P .\/ S ) ./\ ( P .\/ W ) ) = ( ( P .\/ S ) ./\ ( 1. ` K ) ) ) |
| 29 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 30 |
8 29
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> K e. OL ) |
| 31 |
11 3 25
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( 1. ` K ) ) = ( P .\/ S ) ) |
| 32 |
30 17 31
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( ( P .\/ S ) ./\ ( 1. ` K ) ) = ( P .\/ S ) ) |
| 33 |
24 28 32
|
3eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ ( ( P .\/ S ) ./\ W ) ) = ( P .\/ S ) ) |
| 34 |
7 33
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ C ) = ( P .\/ S ) ) |