Step |
Hyp |
Ref |
Expression |
1 |
|
chebbnd1lem2.1 |
|- M = ( |_ ` ( N / 2 ) ) |
2 |
|
2rp |
|- 2 e. RR+ |
3 |
|
4nn |
|- 4 e. NN |
4 |
|
4z |
|- 4 e. ZZ |
5 |
4
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> 4 e. ZZ ) |
6 |
|
rehalfcl |
|- ( N e. RR -> ( N / 2 ) e. RR ) |
7 |
6
|
adantr |
|- ( ( N e. RR /\ 8 <_ N ) -> ( N / 2 ) e. RR ) |
8 |
7
|
flcld |
|- ( ( N e. RR /\ 8 <_ N ) -> ( |_ ` ( N / 2 ) ) e. ZZ ) |
9 |
1 8
|
eqeltrid |
|- ( ( N e. RR /\ 8 <_ N ) -> M e. ZZ ) |
10 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
11 |
|
simpr |
|- ( ( N e. RR /\ 8 <_ N ) -> 8 <_ N ) |
12 |
10 11
|
eqbrtrid |
|- ( ( N e. RR /\ 8 <_ N ) -> ( 4 x. 2 ) <_ N ) |
13 |
|
4re |
|- 4 e. RR |
14 |
13
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> 4 e. RR ) |
15 |
|
simpl |
|- ( ( N e. RR /\ 8 <_ N ) -> N e. RR ) |
16 |
|
2re |
|- 2 e. RR |
17 |
16
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> 2 e. RR ) |
18 |
|
2pos |
|- 0 < 2 |
19 |
18
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> 0 < 2 ) |
20 |
|
lemuldiv |
|- ( ( 4 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 4 x. 2 ) <_ N <-> 4 <_ ( N / 2 ) ) ) |
21 |
14 15 17 19 20
|
syl112anc |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( 4 x. 2 ) <_ N <-> 4 <_ ( N / 2 ) ) ) |
22 |
12 21
|
mpbid |
|- ( ( N e. RR /\ 8 <_ N ) -> 4 <_ ( N / 2 ) ) |
23 |
|
flge |
|- ( ( ( N / 2 ) e. RR /\ 4 e. ZZ ) -> ( 4 <_ ( N / 2 ) <-> 4 <_ ( |_ ` ( N / 2 ) ) ) ) |
24 |
7 4 23
|
sylancl |
|- ( ( N e. RR /\ 8 <_ N ) -> ( 4 <_ ( N / 2 ) <-> 4 <_ ( |_ ` ( N / 2 ) ) ) ) |
25 |
22 24
|
mpbid |
|- ( ( N e. RR /\ 8 <_ N ) -> 4 <_ ( |_ ` ( N / 2 ) ) ) |
26 |
25 1
|
breqtrrdi |
|- ( ( N e. RR /\ 8 <_ N ) -> 4 <_ M ) |
27 |
|
eluz2 |
|- ( M e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ M e. ZZ /\ 4 <_ M ) ) |
28 |
5 9 26 27
|
syl3anbrc |
|- ( ( N e. RR /\ 8 <_ N ) -> M e. ( ZZ>= ` 4 ) ) |
29 |
|
eluznn |
|- ( ( 4 e. NN /\ M e. ( ZZ>= ` 4 ) ) -> M e. NN ) |
30 |
3 28 29
|
sylancr |
|- ( ( N e. RR /\ 8 <_ N ) -> M e. NN ) |
31 |
30
|
nnrpd |
|- ( ( N e. RR /\ 8 <_ N ) -> M e. RR+ ) |
32 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ M e. RR+ ) -> ( 2 x. M ) e. RR+ ) |
33 |
2 31 32
|
sylancr |
|- ( ( N e. RR /\ 8 <_ N ) -> ( 2 x. M ) e. RR+ ) |
34 |
33
|
relogcld |
|- ( ( N e. RR /\ 8 <_ N ) -> ( log ` ( 2 x. M ) ) e. RR ) |
35 |
34 33
|
rerpdivcld |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` ( 2 x. M ) ) / ( 2 x. M ) ) e. RR ) |
36 |
|
0red |
|- ( ( N e. RR /\ 8 <_ N ) -> 0 e. RR ) |
37 |
|
8re |
|- 8 e. RR |
38 |
37
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> 8 e. RR ) |
39 |
|
8pos |
|- 0 < 8 |
40 |
39
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> 0 < 8 ) |
41 |
36 38 15 40 11
|
ltletrd |
|- ( ( N e. RR /\ 8 <_ N ) -> 0 < N ) |
42 |
15 41
|
elrpd |
|- ( ( N e. RR /\ 8 <_ N ) -> N e. RR+ ) |
43 |
42
|
rphalfcld |
|- ( ( N e. RR /\ 8 <_ N ) -> ( N / 2 ) e. RR+ ) |
44 |
43
|
relogcld |
|- ( ( N e. RR /\ 8 <_ N ) -> ( log ` ( N / 2 ) ) e. RR ) |
45 |
44 43
|
rerpdivcld |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) e. RR ) |
46 |
42
|
relogcld |
|- ( ( N e. RR /\ 8 <_ N ) -> ( log ` N ) e. RR ) |
47 |
46 42
|
rerpdivcld |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` N ) / N ) e. RR ) |
48 |
|
remulcl |
|- ( ( 2 e. RR /\ ( ( log ` N ) / N ) e. RR ) -> ( 2 x. ( ( log ` N ) / N ) ) e. RR ) |
49 |
16 47 48
|
sylancr |
|- ( ( N e. RR /\ 8 <_ N ) -> ( 2 x. ( ( log ` N ) / N ) ) e. RR ) |
50 |
9
|
zred |
|- ( ( N e. RR /\ 8 <_ N ) -> M e. RR ) |
51 |
|
peano2re |
|- ( M e. RR -> ( M + 1 ) e. RR ) |
52 |
50 51
|
syl |
|- ( ( N e. RR /\ 8 <_ N ) -> ( M + 1 ) e. RR ) |
53 |
|
remulcl |
|- ( ( 2 e. RR /\ M e. RR ) -> ( 2 x. M ) e. RR ) |
54 |
16 50 53
|
sylancr |
|- ( ( N e. RR /\ 8 <_ N ) -> ( 2 x. M ) e. RR ) |
55 |
|
flltp1 |
|- ( ( N / 2 ) e. RR -> ( N / 2 ) < ( ( |_ ` ( N / 2 ) ) + 1 ) ) |
56 |
7 55
|
syl |
|- ( ( N e. RR /\ 8 <_ N ) -> ( N / 2 ) < ( ( |_ ` ( N / 2 ) ) + 1 ) ) |
57 |
1
|
oveq1i |
|- ( M + 1 ) = ( ( |_ ` ( N / 2 ) ) + 1 ) |
58 |
56 57
|
breqtrrdi |
|- ( ( N e. RR /\ 8 <_ N ) -> ( N / 2 ) < ( M + 1 ) ) |
59 |
|
1red |
|- ( ( N e. RR /\ 8 <_ N ) -> 1 e. RR ) |
60 |
30
|
nnge1d |
|- ( ( N e. RR /\ 8 <_ N ) -> 1 <_ M ) |
61 |
59 50 50 60
|
leadd2dd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( M + 1 ) <_ ( M + M ) ) |
62 |
50
|
recnd |
|- ( ( N e. RR /\ 8 <_ N ) -> M e. CC ) |
63 |
62
|
2timesd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( 2 x. M ) = ( M + M ) ) |
64 |
61 63
|
breqtrrd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( M + 1 ) <_ ( 2 x. M ) ) |
65 |
7 52 54 58 64
|
ltletrd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( N / 2 ) < ( 2 x. M ) ) |
66 |
|
ere |
|- _e e. RR |
67 |
66
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> _e e. RR ) |
68 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
69 |
68
|
simpri |
|- _e < 3 |
70 |
|
3lt4 |
|- 3 < 4 |
71 |
|
3re |
|- 3 e. RR |
72 |
66 71 13
|
lttri |
|- ( ( _e < 3 /\ 3 < 4 ) -> _e < 4 ) |
73 |
69 70 72
|
mp2an |
|- _e < 4 |
74 |
73
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> _e < 4 ) |
75 |
67 14 7 74 22
|
ltletrd |
|- ( ( N e. RR /\ 8 <_ N ) -> _e < ( N / 2 ) ) |
76 |
67 7 75
|
ltled |
|- ( ( N e. RR /\ 8 <_ N ) -> _e <_ ( N / 2 ) ) |
77 |
67 7 54 75 65
|
lttrd |
|- ( ( N e. RR /\ 8 <_ N ) -> _e < ( 2 x. M ) ) |
78 |
67 54 77
|
ltled |
|- ( ( N e. RR /\ 8 <_ N ) -> _e <_ ( 2 x. M ) ) |
79 |
|
logdivlt |
|- ( ( ( ( N / 2 ) e. RR /\ _e <_ ( N / 2 ) ) /\ ( ( 2 x. M ) e. RR /\ _e <_ ( 2 x. M ) ) ) -> ( ( N / 2 ) < ( 2 x. M ) <-> ( ( log ` ( 2 x. M ) ) / ( 2 x. M ) ) < ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) ) |
80 |
7 76 54 78 79
|
syl22anc |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( N / 2 ) < ( 2 x. M ) <-> ( ( log ` ( 2 x. M ) ) / ( 2 x. M ) ) < ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) ) |
81 |
65 80
|
mpbid |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` ( 2 x. M ) ) / ( 2 x. M ) ) < ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) |
82 |
|
rphalflt |
|- ( N e. RR+ -> ( N / 2 ) < N ) |
83 |
42 82
|
syl |
|- ( ( N e. RR /\ 8 <_ N ) -> ( N / 2 ) < N ) |
84 |
|
logltb |
|- ( ( ( N / 2 ) e. RR+ /\ N e. RR+ ) -> ( ( N / 2 ) < N <-> ( log ` ( N / 2 ) ) < ( log ` N ) ) ) |
85 |
43 42 84
|
syl2anc |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( N / 2 ) < N <-> ( log ` ( N / 2 ) ) < ( log ` N ) ) ) |
86 |
83 85
|
mpbid |
|- ( ( N e. RR /\ 8 <_ N ) -> ( log ` ( N / 2 ) ) < ( log ` N ) ) |
87 |
44 46 43 86
|
ltdiv1dd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) < ( ( log ` N ) / ( N / 2 ) ) ) |
88 |
46
|
recnd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( log ` N ) e. CC ) |
89 |
15
|
recnd |
|- ( ( N e. RR /\ 8 <_ N ) -> N e. CC ) |
90 |
17
|
recnd |
|- ( ( N e. RR /\ 8 <_ N ) -> 2 e. CC ) |
91 |
42
|
rpne0d |
|- ( ( N e. RR /\ 8 <_ N ) -> N =/= 0 ) |
92 |
|
2ne0 |
|- 2 =/= 0 |
93 |
92
|
a1i |
|- ( ( N e. RR /\ 8 <_ N ) -> 2 =/= 0 ) |
94 |
88 89 90 91 93
|
divdiv2d |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` N ) / ( N / 2 ) ) = ( ( ( log ` N ) x. 2 ) / N ) ) |
95 |
88 90
|
mulcomd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` N ) x. 2 ) = ( 2 x. ( log ` N ) ) ) |
96 |
95
|
oveq1d |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( ( log ` N ) x. 2 ) / N ) = ( ( 2 x. ( log ` N ) ) / N ) ) |
97 |
90 88 89 91
|
divassd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( 2 x. ( log ` N ) ) / N ) = ( 2 x. ( ( log ` N ) / N ) ) ) |
98 |
94 96 97
|
3eqtrd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` N ) / ( N / 2 ) ) = ( 2 x. ( ( log ` N ) / N ) ) ) |
99 |
87 98
|
breqtrd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) < ( 2 x. ( ( log ` N ) / N ) ) ) |
100 |
35 45 49 81 99
|
lttrd |
|- ( ( N e. RR /\ 8 <_ N ) -> ( ( log ` ( 2 x. M ) ) / ( 2 x. M ) ) < ( 2 x. ( ( log ` N ) / N ) ) ) |