Step |
Hyp |
Ref |
Expression |
1 |
|
chebbnd1lem2.1 |
|
2 |
|
2rp |
|
3 |
|
4nn |
|
4 |
|
4z |
|
5 |
4
|
a1i |
|
6 |
|
rehalfcl |
|
7 |
6
|
adantr |
|
8 |
7
|
flcld |
|
9 |
1 8
|
eqeltrid |
|
10 |
|
4t2e8 |
|
11 |
|
simpr |
|
12 |
10 11
|
eqbrtrid |
|
13 |
|
4re |
|
14 |
13
|
a1i |
|
15 |
|
simpl |
|
16 |
|
2re |
|
17 |
16
|
a1i |
|
18 |
|
2pos |
|
19 |
18
|
a1i |
|
20 |
|
lemuldiv |
|
21 |
14 15 17 19 20
|
syl112anc |
|
22 |
12 21
|
mpbid |
|
23 |
|
flge |
|
24 |
7 4 23
|
sylancl |
|
25 |
22 24
|
mpbid |
|
26 |
25 1
|
breqtrrdi |
|
27 |
|
eluz2 |
|
28 |
5 9 26 27
|
syl3anbrc |
|
29 |
|
eluznn |
|
30 |
3 28 29
|
sylancr |
|
31 |
30
|
nnrpd |
|
32 |
|
rpmulcl |
|
33 |
2 31 32
|
sylancr |
|
34 |
33
|
relogcld |
|
35 |
34 33
|
rerpdivcld |
|
36 |
|
0red |
|
37 |
|
8re |
|
38 |
37
|
a1i |
|
39 |
|
8pos |
|
40 |
39
|
a1i |
|
41 |
36 38 15 40 11
|
ltletrd |
|
42 |
15 41
|
elrpd |
|
43 |
42
|
rphalfcld |
|
44 |
43
|
relogcld |
|
45 |
44 43
|
rerpdivcld |
|
46 |
42
|
relogcld |
|
47 |
46 42
|
rerpdivcld |
|
48 |
|
remulcl |
|
49 |
16 47 48
|
sylancr |
|
50 |
9
|
zred |
|
51 |
|
peano2re |
|
52 |
50 51
|
syl |
|
53 |
|
remulcl |
|
54 |
16 50 53
|
sylancr |
|
55 |
|
flltp1 |
|
56 |
7 55
|
syl |
|
57 |
1
|
oveq1i |
|
58 |
56 57
|
breqtrrdi |
|
59 |
|
1red |
|
60 |
30
|
nnge1d |
|
61 |
59 50 50 60
|
leadd2dd |
|
62 |
50
|
recnd |
|
63 |
62
|
2timesd |
|
64 |
61 63
|
breqtrrd |
|
65 |
7 52 54 58 64
|
ltletrd |
|
66 |
|
ere |
|
67 |
66
|
a1i |
|
68 |
|
egt2lt3 |
|
69 |
68
|
simpri |
|
70 |
|
3lt4 |
|
71 |
|
3re |
|
72 |
66 71 13
|
lttri |
|
73 |
69 70 72
|
mp2an |
|
74 |
73
|
a1i |
|
75 |
67 14 7 74 22
|
ltletrd |
|
76 |
67 7 75
|
ltled |
|
77 |
67 7 54 75 65
|
lttrd |
|
78 |
67 54 77
|
ltled |
|
79 |
|
logdivlt |
|
80 |
7 76 54 78 79
|
syl22anc |
|
81 |
65 80
|
mpbid |
|
82 |
|
rphalflt |
|
83 |
42 82
|
syl |
|
84 |
|
logltb |
|
85 |
43 42 84
|
syl2anc |
|
86 |
83 85
|
mpbid |
|
87 |
44 46 43 86
|
ltdiv1dd |
|
88 |
46
|
recnd |
|
89 |
15
|
recnd |
|
90 |
17
|
recnd |
|
91 |
42
|
rpne0d |
|
92 |
|
2ne0 |
|
93 |
92
|
a1i |
|
94 |
88 89 90 91 93
|
divdiv2d |
|
95 |
88 90
|
mulcomd |
|
96 |
95
|
oveq1d |
|
97 |
90 88 89 91
|
divassd |
|
98 |
94 96 97
|
3eqtrd |
|
99 |
87 98
|
breqtrd |
|
100 |
35 45 49 81 99
|
lttrd |
|