| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnextf.1 |
|- C = U. J |
| 2 |
|
cnextf.2 |
|- B = U. K |
| 3 |
|
cnextf.3 |
|- ( ph -> J e. Top ) |
| 4 |
|
cnextf.4 |
|- ( ph -> K e. Haus ) |
| 5 |
|
cnextf.5 |
|- ( ph -> F : A --> B ) |
| 6 |
|
cnextf.a |
|- ( ph -> A C_ C ) |
| 7 |
|
cnextf.6 |
|- ( ph -> ( ( cls ` J ) ` A ) = C ) |
| 8 |
|
cnextf.7 |
|- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ X e. C ) -> J e. Top ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ X e. C ) -> K e. Haus ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ X e. C ) -> F : A --> B ) |
| 12 |
6
|
adantr |
|- ( ( ph /\ X e. C ) -> A C_ C ) |
| 13 |
1 2
|
cnextfun |
|- ( ( ( J e. Top /\ K e. Haus ) /\ ( F : A --> B /\ A C_ C ) ) -> Fun ( ( J CnExt K ) ` F ) ) |
| 14 |
9 10 11 12 13
|
syl22anc |
|- ( ( ph /\ X e. C ) -> Fun ( ( J CnExt K ) ` F ) ) |
| 15 |
7
|
eleq2d |
|- ( ph -> ( X e. ( ( cls ` J ) ` A ) <-> X e. C ) ) |
| 16 |
15
|
biimpar |
|- ( ( ph /\ X e. C ) -> X e. ( ( cls ` J ) ` A ) ) |
| 17 |
|
fvex |
|- ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. _V |
| 18 |
17
|
uniex |
|- U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. _V |
| 19 |
18
|
snid |
|- U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. { U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) } |
| 20 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
| 21 |
20
|
fveq2d |
|- ( x = X -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { X } ) ) |
| 22 |
21
|
oveq1d |
|- ( x = X -> ( ( ( nei ` J ) ` { x } ) |`t A ) = ( ( ( nei ` J ) ` { X } ) |`t A ) ) |
| 23 |
22
|
oveq2d |
|- ( x = X -> ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ) |
| 24 |
23
|
fveq1d |
|- ( x = X -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) = ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 25 |
24
|
breq1d |
|- ( x = X -> ( ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o <-> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o ) ) |
| 26 |
25
|
imbi2d |
|- ( x = X -> ( ( ph -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) <-> ( ph -> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o ) ) ) |
| 27 |
4
|
adantr |
|- ( ( ph /\ x e. C ) -> K e. Haus ) |
| 28 |
3
|
adantr |
|- ( ( ph /\ x e. C ) -> J e. Top ) |
| 29 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` C ) ) |
| 30 |
28 29
|
sylib |
|- ( ( ph /\ x e. C ) -> J e. ( TopOn ` C ) ) |
| 31 |
6
|
adantr |
|- ( ( ph /\ x e. C ) -> A C_ C ) |
| 32 |
|
simpr |
|- ( ( ph /\ x e. C ) -> x e. C ) |
| 33 |
7
|
eleq2d |
|- ( ph -> ( x e. ( ( cls ` J ) ` A ) <-> x e. C ) ) |
| 34 |
33
|
biimpar |
|- ( ( ph /\ x e. C ) -> x e. ( ( cls ` J ) ` A ) ) |
| 35 |
|
trnei |
|- ( ( J e. ( TopOn ` C ) /\ A C_ C /\ x e. C ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
| 36 |
35
|
biimpa |
|- ( ( ( J e. ( TopOn ` C ) /\ A C_ C /\ x e. C ) /\ x e. ( ( cls ` J ) ` A ) ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 37 |
30 31 32 34 36
|
syl31anc |
|- ( ( ph /\ x e. C ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 38 |
5
|
adantr |
|- ( ( ph /\ x e. C ) -> F : A --> B ) |
| 39 |
2
|
hausflf2 |
|- ( ( ( K e. Haus /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) /\ ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) |
| 40 |
27 37 38 8 39
|
syl31anc |
|- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) |
| 41 |
40
|
expcom |
|- ( x e. C -> ( ph -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) ) |
| 42 |
26 41
|
vtoclga |
|- ( X e. C -> ( ph -> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o ) ) |
| 43 |
42
|
impcom |
|- ( ( ph /\ X e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o ) |
| 44 |
|
en1b |
|- ( ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ~~ 1o <-> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) } ) |
| 45 |
43 44
|
sylib |
|- ( ( ph /\ X e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) } ) |
| 46 |
19 45
|
eleqtrrid |
|- ( ( ph /\ X e. C ) -> U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 47 |
|
nfiu1 |
|- F/_ x U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 48 |
47
|
nfel2 |
|- F/ x <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 49 |
|
nfv |
|- F/ x ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 50 |
48 49
|
nfbi |
|- F/ x ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 51 |
|
opeq1 |
|- ( x = X -> <. x , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. = <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. ) |
| 52 |
51
|
eleq1d |
|- ( x = X -> ( <. x , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 53 |
|
eleq1 |
|- ( x = X -> ( x e. ( ( cls ` J ) ` A ) <-> X e. ( ( cls ` J ) ` A ) ) ) |
| 54 |
24
|
eleq2d |
|- ( x = X -> ( U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) <-> U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 55 |
53 54
|
anbi12d |
|- ( x = X -> ( ( x e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) ) |
| 56 |
52 55
|
bibi12d |
|- ( x = X -> ( ( <. x , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( x e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) <-> ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) ) ) |
| 57 |
|
opeliunxp |
|- ( <. x , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( x e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 58 |
50 56 57
|
vtoclg1f |
|- ( X e. C -> ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) ) |
| 59 |
58
|
adantl |
|- ( ( ph /\ X e. C ) -> ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) ) |
| 60 |
16 46 59
|
mpbir2and |
|- ( ( ph /\ X e. C ) -> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 61 |
|
df-br |
|- ( X ( ( J CnExt K ) ` F ) U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) <-> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. ( ( J CnExt K ) ` F ) ) |
| 62 |
|
haustop |
|- ( K e. Haus -> K e. Top ) |
| 63 |
4 62
|
syl |
|- ( ph -> K e. Top ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ X e. C ) -> K e. Top ) |
| 65 |
1 2
|
cnextfval |
|- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 66 |
9 64 11 12 65
|
syl22anc |
|- ( ( ph /\ X e. C ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 67 |
66
|
eleq2d |
|- ( ( ph /\ X e. C ) -> ( <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. ( ( J CnExt K ) ` F ) <-> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 68 |
61 67
|
bitrid |
|- ( ( ph /\ X e. C ) -> ( X ( ( J CnExt K ) ` F ) U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) <-> <. X , U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) ) |
| 69 |
60 68
|
mpbird |
|- ( ( ph /\ X e. C ) -> X ( ( J CnExt K ) ` F ) U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 70 |
|
funbrfv |
|- ( Fun ( ( J CnExt K ) ` F ) -> ( X ( ( J CnExt K ) ` F ) U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) -> ( ( ( J CnExt K ) ` F ) ` X ) = U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 71 |
14 69 70
|
sylc |
|- ( ( ph /\ X e. C ) -> ( ( ( J CnExt K ) ` F ) ` X ) = U. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |