| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnlnadjlem.1 |
|- T e. LinOp |
| 2 |
|
cnlnadjlem.2 |
|- T e. ContOp |
| 3 |
|
cnlnadjlem.3 |
|- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
| 4 |
|
cnlnadjlem.4 |
|- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
| 5 |
|
cnlnadjlem.5 |
|- F = ( y e. ~H |-> B ) |
| 6 |
|
breq1 |
|- ( ( normh ` ( F ` A ) ) = 0 -> ( ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> 0 <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
| 7 |
1 2 3 4 5
|
cnlnadjlem4 |
|- ( A e. ~H -> ( F ` A ) e. ~H ) |
| 8 |
1
|
lnopfi |
|- T : ~H --> ~H |
| 9 |
8
|
ffvelcdmi |
|- ( ( F ` A ) e. ~H -> ( T ` ( F ` A ) ) e. ~H ) |
| 10 |
7 9
|
syl |
|- ( A e. ~H -> ( T ` ( F ` A ) ) e. ~H ) |
| 11 |
|
hicl |
|- ( ( ( T ` ( F ` A ) ) e. ~H /\ A e. ~H ) -> ( ( T ` ( F ` A ) ) .ih A ) e. CC ) |
| 12 |
10 11
|
mpancom |
|- ( A e. ~H -> ( ( T ` ( F ` A ) ) .ih A ) e. CC ) |
| 13 |
12
|
abscld |
|- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) e. RR ) |
| 14 |
|
normcl |
|- ( ( T ` ( F ` A ) ) e. ~H -> ( normh ` ( T ` ( F ` A ) ) ) e. RR ) |
| 15 |
10 14
|
syl |
|- ( A e. ~H -> ( normh ` ( T ` ( F ` A ) ) ) e. RR ) |
| 16 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
| 17 |
15 16
|
remulcld |
|- ( A e. ~H -> ( ( normh ` ( T ` ( F ` A ) ) ) x. ( normh ` A ) ) e. RR ) |
| 18 |
1 2
|
nmcopexi |
|- ( normop ` T ) e. RR |
| 19 |
|
normcl |
|- ( ( F ` A ) e. ~H -> ( normh ` ( F ` A ) ) e. RR ) |
| 20 |
7 19
|
syl |
|- ( A e. ~H -> ( normh ` ( F ` A ) ) e. RR ) |
| 21 |
|
remulcl |
|- ( ( ( normop ` T ) e. RR /\ ( normh ` ( F ` A ) ) e. RR ) -> ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) e. RR ) |
| 22 |
18 20 21
|
sylancr |
|- ( A e. ~H -> ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) e. RR ) |
| 23 |
22 16
|
remulcld |
|- ( A e. ~H -> ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) e. RR ) |
| 24 |
|
bcs |
|- ( ( ( T ` ( F ` A ) ) e. ~H /\ A e. ~H ) -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) <_ ( ( normh ` ( T ` ( F ` A ) ) ) x. ( normh ` A ) ) ) |
| 25 |
10 24
|
mpancom |
|- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) <_ ( ( normh ` ( T ` ( F ` A ) ) ) x. ( normh ` A ) ) ) |
| 26 |
|
normge0 |
|- ( A e. ~H -> 0 <_ ( normh ` A ) ) |
| 27 |
1 2
|
nmcoplbi |
|- ( ( F ` A ) e. ~H -> ( normh ` ( T ` ( F ` A ) ) ) <_ ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) ) |
| 28 |
7 27
|
syl |
|- ( A e. ~H -> ( normh ` ( T ` ( F ` A ) ) ) <_ ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) ) |
| 29 |
15 22 16 26 28
|
lemul1ad |
|- ( A e. ~H -> ( ( normh ` ( T ` ( F ` A ) ) ) x. ( normh ` A ) ) <_ ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) ) |
| 30 |
13 17 23 25 29
|
letrd |
|- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) <_ ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) ) |
| 31 |
1 2 3 4 5
|
cnlnadjlem5 |
|- ( ( A e. ~H /\ ( F ` A ) e. ~H ) -> ( ( T ` ( F ` A ) ) .ih A ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 32 |
7 31
|
mpdan |
|- ( A e. ~H -> ( ( T ` ( F ` A ) ) .ih A ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 33 |
32
|
fveq2d |
|- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) = ( abs ` ( ( F ` A ) .ih ( F ` A ) ) ) ) |
| 34 |
|
hiidrcl |
|- ( ( F ` A ) e. ~H -> ( ( F ` A ) .ih ( F ` A ) ) e. RR ) |
| 35 |
7 34
|
syl |
|- ( A e. ~H -> ( ( F ` A ) .ih ( F ` A ) ) e. RR ) |
| 36 |
|
hiidge0 |
|- ( ( F ` A ) e. ~H -> 0 <_ ( ( F ` A ) .ih ( F ` A ) ) ) |
| 37 |
7 36
|
syl |
|- ( A e. ~H -> 0 <_ ( ( F ` A ) .ih ( F ` A ) ) ) |
| 38 |
35 37
|
absidd |
|- ( A e. ~H -> ( abs ` ( ( F ` A ) .ih ( F ` A ) ) ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 39 |
|
normsq |
|- ( ( F ` A ) e. ~H -> ( ( normh ` ( F ` A ) ) ^ 2 ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 40 |
7 39
|
syl |
|- ( A e. ~H -> ( ( normh ` ( F ` A ) ) ^ 2 ) = ( ( F ` A ) .ih ( F ` A ) ) ) |
| 41 |
20
|
recnd |
|- ( A e. ~H -> ( normh ` ( F ` A ) ) e. CC ) |
| 42 |
41
|
sqvald |
|- ( A e. ~H -> ( ( normh ` ( F ` A ) ) ^ 2 ) = ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 43 |
40 42
|
eqtr3d |
|- ( A e. ~H -> ( ( F ` A ) .ih ( F ` A ) ) = ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 44 |
33 38 43
|
3eqtrd |
|- ( A e. ~H -> ( abs ` ( ( T ` ( F ` A ) ) .ih A ) ) = ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 45 |
16
|
recnd |
|- ( A e. ~H -> ( normh ` A ) e. CC ) |
| 46 |
18
|
recni |
|- ( normop ` T ) e. CC |
| 47 |
|
mul32 |
|- ( ( ( normop ` T ) e. CC /\ ( normh ` ( F ` A ) ) e. CC /\ ( normh ` A ) e. CC ) -> ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) = ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 48 |
46 47
|
mp3an1 |
|- ( ( ( normh ` ( F ` A ) ) e. CC /\ ( normh ` A ) e. CC ) -> ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) = ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 49 |
41 45 48
|
syl2anc |
|- ( A e. ~H -> ( ( ( normop ` T ) x. ( normh ` ( F ` A ) ) ) x. ( normh ` A ) ) = ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 50 |
30 44 49
|
3brtr3d |
|- ( A e. ~H -> ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) <_ ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 51 |
50
|
adantr |
|- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) <_ ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) |
| 52 |
20
|
adantr |
|- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( normh ` ( F ` A ) ) e. RR ) |
| 53 |
|
remulcl |
|- ( ( ( normop ` T ) e. RR /\ ( normh ` A ) e. RR ) -> ( ( normop ` T ) x. ( normh ` A ) ) e. RR ) |
| 54 |
18 16 53
|
sylancr |
|- ( A e. ~H -> ( ( normop ` T ) x. ( normh ` A ) ) e. RR ) |
| 55 |
54
|
adantr |
|- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( ( normop ` T ) x. ( normh ` A ) ) e. RR ) |
| 56 |
|
normge0 |
|- ( ( F ` A ) e. ~H -> 0 <_ ( normh ` ( F ` A ) ) ) |
| 57 |
|
0re |
|- 0 e. RR |
| 58 |
|
leltne |
|- ( ( 0 e. RR /\ ( normh ` ( F ` A ) ) e. RR /\ 0 <_ ( normh ` ( F ` A ) ) ) -> ( 0 < ( normh ` ( F ` A ) ) <-> ( normh ` ( F ` A ) ) =/= 0 ) ) |
| 59 |
57 58
|
mp3an1 |
|- ( ( ( normh ` ( F ` A ) ) e. RR /\ 0 <_ ( normh ` ( F ` A ) ) ) -> ( 0 < ( normh ` ( F ` A ) ) <-> ( normh ` ( F ` A ) ) =/= 0 ) ) |
| 60 |
19 56 59
|
syl2anc |
|- ( ( F ` A ) e. ~H -> ( 0 < ( normh ` ( F ` A ) ) <-> ( normh ` ( F ` A ) ) =/= 0 ) ) |
| 61 |
60
|
biimpar |
|- ( ( ( F ` A ) e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> 0 < ( normh ` ( F ` A ) ) ) |
| 62 |
7 61
|
sylan |
|- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> 0 < ( normh ` ( F ` A ) ) ) |
| 63 |
|
lemul1 |
|- ( ( ( normh ` ( F ` A ) ) e. RR /\ ( ( normop ` T ) x. ( normh ` A ) ) e. RR /\ ( ( normh ` ( F ` A ) ) e. RR /\ 0 < ( normh ` ( F ` A ) ) ) ) -> ( ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) <_ ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) ) |
| 64 |
52 55 52 62 63
|
syl112anc |
|- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( ( normh ` ( F ` A ) ) x. ( normh ` ( F ` A ) ) ) <_ ( ( ( normop ` T ) x. ( normh ` A ) ) x. ( normh ` ( F ` A ) ) ) ) ) |
| 65 |
51 64
|
mpbird |
|- ( ( A e. ~H /\ ( normh ` ( F ` A ) ) =/= 0 ) -> ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 66 |
|
nmopge0 |
|- ( T : ~H --> ~H -> 0 <_ ( normop ` T ) ) |
| 67 |
8 66
|
ax-mp |
|- 0 <_ ( normop ` T ) |
| 68 |
|
mulge0 |
|- ( ( ( ( normop ` T ) e. RR /\ 0 <_ ( normop ` T ) ) /\ ( ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) ) -> 0 <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 69 |
18 67 68
|
mpanl12 |
|- ( ( ( normh ` A ) e. RR /\ 0 <_ ( normh ` A ) ) -> 0 <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 70 |
16 26 69
|
syl2anc |
|- ( A e. ~H -> 0 <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 71 |
6 65 70
|
pm2.61ne |
|- ( A e. ~H -> ( normh ` ( F ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |