Step |
Hyp |
Ref |
Expression |
1 |
|
cnpwstotbnd.y |
|- Y = ( ( CCfld |`s A ) ^s I ) |
2 |
|
cnpwstotbnd.d |
|- D = ( ( dist ` Y ) |` ( X X. X ) ) |
3 |
|
eqid |
|- ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) = ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) |
4 |
|
eqid |
|- ( Base ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) = ( Base ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |
5 |
|
eqid |
|- ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) = ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |
6 |
|
eqid |
|- ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) = ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) |
7 |
|
eqid |
|- ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) = ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |
8 |
|
fvexd |
|- ( ( A C_ CC /\ I e. Fin ) -> ( Scalar ` ( CCfld |`s A ) ) e. _V ) |
9 |
|
simpr |
|- ( ( A C_ CC /\ I e. Fin ) -> I e. Fin ) |
10 |
|
ovex |
|- ( CCfld |`s A ) e. _V |
11 |
|
fnconstg |
|- ( ( CCfld |`s A ) e. _V -> ( I X. { ( CCfld |`s A ) } ) Fn I ) |
12 |
10 11
|
mp1i |
|- ( ( A C_ CC /\ I e. Fin ) -> ( I X. { ( CCfld |`s A ) } ) Fn I ) |
13 |
|
eqid |
|- ( ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |` ( X X. X ) ) = ( ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |` ( X X. X ) ) |
14 |
|
cnfldms |
|- CCfld e. MetSp |
15 |
|
cnex |
|- CC e. _V |
16 |
15
|
ssex |
|- ( A C_ CC -> A e. _V ) |
17 |
16
|
ad2antrr |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> A e. _V ) |
18 |
|
ressms |
|- ( ( CCfld e. MetSp /\ A e. _V ) -> ( CCfld |`s A ) e. MetSp ) |
19 |
14 17 18
|
sylancr |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( CCfld |`s A ) e. MetSp ) |
20 |
|
eqid |
|- ( Base ` ( CCfld |`s A ) ) = ( Base ` ( CCfld |`s A ) ) |
21 |
|
eqid |
|- ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) = ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |
22 |
20 21
|
msmet |
|- ( ( CCfld |`s A ) e. MetSp -> ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) e. ( Met ` ( Base ` ( CCfld |`s A ) ) ) ) |
23 |
19 22
|
syl |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) e. ( Met ` ( Base ` ( CCfld |`s A ) ) ) ) |
24 |
10
|
fvconst2 |
|- ( x e. I -> ( ( I X. { ( CCfld |`s A ) } ) ` x ) = ( CCfld |`s A ) ) |
25 |
24
|
adantl |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( I X. { ( CCfld |`s A ) } ) ` x ) = ( CCfld |`s A ) ) |
26 |
25
|
fveq2d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) = ( dist ` ( CCfld |`s A ) ) ) |
27 |
25
|
fveq2d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) = ( Base ` ( CCfld |`s A ) ) ) |
28 |
27
|
sqxpeqd |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) = ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |
29 |
26 28
|
reseq12d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) = ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) ) |
30 |
27
|
fveq2d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( Met ` ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) = ( Met ` ( Base ` ( CCfld |`s A ) ) ) ) |
31 |
23 29 30
|
3eltr4d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) e. ( Met ` ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) |
32 |
|
totbndbnd |
|- ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) -> ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) ) |
33 |
|
eqid |
|- ( CCfld |`s A ) = ( CCfld |`s A ) |
34 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
35 |
33 34
|
ressbas2 |
|- ( A C_ CC -> A = ( Base ` ( CCfld |`s A ) ) ) |
36 |
35
|
ad2antrr |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> A = ( Base ` ( CCfld |`s A ) ) ) |
37 |
36
|
fveq2d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( Met ` A ) = ( Met ` ( Base ` ( CCfld |`s A ) ) ) ) |
38 |
23 37
|
eleqtrrd |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) e. ( Met ` A ) ) |
39 |
|
eqid |
|- ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) = ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) |
40 |
39
|
bnd2lem |
|- ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) e. ( Met ` A ) /\ ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) ) -> y C_ A ) |
41 |
40
|
ex |
|- ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) e. ( Met ` A ) -> ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) -> y C_ A ) ) |
42 |
38 41
|
syl |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) -> y C_ A ) ) |
43 |
32 42
|
syl5 |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) -> y C_ A ) ) |
44 |
|
eqid |
|- ( ( abs o. - ) |` ( y X. y ) ) = ( ( abs o. - ) |` ( y X. y ) ) |
45 |
44
|
cntotbnd |
|- ( ( ( abs o. - ) |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( ( abs o. - ) |` ( y X. y ) ) e. ( Bnd ` y ) ) |
46 |
45
|
a1i |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( ( ( abs o. - ) |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( ( abs o. - ) |` ( y X. y ) ) e. ( Bnd ` y ) ) ) |
47 |
36
|
sseq2d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( y C_ A <-> y C_ ( Base ` ( CCfld |`s A ) ) ) ) |
48 |
47
|
biimpa |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> y C_ ( Base ` ( CCfld |`s A ) ) ) |
49 |
|
xpss12 |
|- ( ( y C_ ( Base ` ( CCfld |`s A ) ) /\ y C_ ( Base ` ( CCfld |`s A ) ) ) -> ( y X. y ) C_ ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |
50 |
48 48 49
|
syl2anc |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( y X. y ) C_ ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |
51 |
50
|
resabs1d |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) = ( ( dist ` ( CCfld |`s A ) ) |` ( y X. y ) ) ) |
52 |
17
|
adantr |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> A e. _V ) |
53 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
54 |
33 53
|
ressds |
|- ( A e. _V -> ( abs o. - ) = ( dist ` ( CCfld |`s A ) ) ) |
55 |
52 54
|
syl |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( abs o. - ) = ( dist ` ( CCfld |`s A ) ) ) |
56 |
55
|
reseq1d |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( ( abs o. - ) |` ( y X. y ) ) = ( ( dist ` ( CCfld |`s A ) ) |` ( y X. y ) ) ) |
57 |
51 56
|
eqtr4d |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) = ( ( abs o. - ) |` ( y X. y ) ) ) |
58 |
57
|
eleq1d |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( ( abs o. - ) |` ( y X. y ) ) e. ( TotBnd ` y ) ) ) |
59 |
57
|
eleq1d |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) <-> ( ( abs o. - ) |` ( y X. y ) ) e. ( Bnd ` y ) ) ) |
60 |
46 58 59
|
3bitr4d |
|- ( ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) /\ y C_ A ) -> ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) ) ) |
61 |
60
|
ex |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( y C_ A -> ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) ) ) ) |
62 |
43 42 61
|
pm5.21ndd |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) ) ) |
63 |
29
|
reseq1d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) |` ( y X. y ) ) = ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) ) |
64 |
63
|
eleq1d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) ) ) |
65 |
63
|
eleq1d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) <-> ( ( ( dist ` ( CCfld |`s A ) ) |` ( ( Base ` ( CCfld |`s A ) ) X. ( Base ` ( CCfld |`s A ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) ) ) |
66 |
62 64 65
|
3bitr4d |
|- ( ( ( A C_ CC /\ I e. Fin ) /\ x e. I ) -> ( ( ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) |` ( y X. y ) ) e. ( TotBnd ` y ) <-> ( ( ( dist ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) |` ( ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) X. ( Base ` ( ( I X. { ( CCfld |`s A ) } ) ` x ) ) ) ) |` ( y X. y ) ) e. ( Bnd ` y ) ) ) |
67 |
3 4 5 6 7 8 9 12 13 31 66
|
prdsbnd2 |
|- ( ( A C_ CC /\ I e. Fin ) -> ( ( ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |` ( X X. X ) ) e. ( TotBnd ` X ) <-> ( ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |` ( X X. X ) ) e. ( Bnd ` X ) ) ) |
68 |
|
eqid |
|- ( Scalar ` ( CCfld |`s A ) ) = ( Scalar ` ( CCfld |`s A ) ) |
69 |
1 68
|
pwsval |
|- ( ( ( CCfld |`s A ) e. _V /\ I e. Fin ) -> Y = ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |
70 |
10 9 69
|
sylancr |
|- ( ( A C_ CC /\ I e. Fin ) -> Y = ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |
71 |
70
|
fveq2d |
|- ( ( A C_ CC /\ I e. Fin ) -> ( dist ` Y ) = ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) ) |
72 |
71
|
reseq1d |
|- ( ( A C_ CC /\ I e. Fin ) -> ( ( dist ` Y ) |` ( X X. X ) ) = ( ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |` ( X X. X ) ) ) |
73 |
2 72
|
eqtrid |
|- ( ( A C_ CC /\ I e. Fin ) -> D = ( ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |` ( X X. X ) ) ) |
74 |
73
|
eleq1d |
|- ( ( A C_ CC /\ I e. Fin ) -> ( D e. ( TotBnd ` X ) <-> ( ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |` ( X X. X ) ) e. ( TotBnd ` X ) ) ) |
75 |
73
|
eleq1d |
|- ( ( A C_ CC /\ I e. Fin ) -> ( D e. ( Bnd ` X ) <-> ( ( dist ` ( ( Scalar ` ( CCfld |`s A ) ) Xs_ ( I X. { ( CCfld |`s A ) } ) ) ) |` ( X X. X ) ) e. ( Bnd ` X ) ) ) |
76 |
67 74 75
|
3bitr4d |
|- ( ( A C_ CC /\ I e. Fin ) -> ( D e. ( TotBnd ` X ) <-> D e. ( Bnd ` X ) ) ) |