Step |
Hyp |
Ref |
Expression |
1 |
|
cnpwstotbnd.y |
|
2 |
|
cnpwstotbnd.d |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
fvexd |
|
9 |
|
simpr |
|
10 |
|
ovex |
|
11 |
|
fnconstg |
|
12 |
10 11
|
mp1i |
|
13 |
|
eqid |
|
14 |
|
cnfldms |
|
15 |
|
cnex |
|
16 |
15
|
ssex |
|
17 |
16
|
ad2antrr |
|
18 |
|
ressms |
|
19 |
14 17 18
|
sylancr |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
20 21
|
msmet |
|
23 |
19 22
|
syl |
|
24 |
10
|
fvconst2 |
|
25 |
24
|
adantl |
|
26 |
25
|
fveq2d |
|
27 |
25
|
fveq2d |
|
28 |
27
|
sqxpeqd |
|
29 |
26 28
|
reseq12d |
|
30 |
27
|
fveq2d |
|
31 |
23 29 30
|
3eltr4d |
|
32 |
|
totbndbnd |
|
33 |
|
eqid |
|
34 |
|
cnfldbas |
|
35 |
33 34
|
ressbas2 |
|
36 |
35
|
ad2antrr |
|
37 |
36
|
fveq2d |
|
38 |
23 37
|
eleqtrrd |
|
39 |
|
eqid |
|
40 |
39
|
bnd2lem |
|
41 |
40
|
ex |
|
42 |
38 41
|
syl |
|
43 |
32 42
|
syl5 |
|
44 |
|
eqid |
|
45 |
44
|
cntotbnd |
|
46 |
45
|
a1i |
|
47 |
36
|
sseq2d |
|
48 |
47
|
biimpa |
|
49 |
|
xpss12 |
|
50 |
48 48 49
|
syl2anc |
|
51 |
50
|
resabs1d |
|
52 |
17
|
adantr |
|
53 |
|
cnfldds |
|
54 |
33 53
|
ressds |
|
55 |
52 54
|
syl |
|
56 |
55
|
reseq1d |
|
57 |
51 56
|
eqtr4d |
|
58 |
57
|
eleq1d |
|
59 |
57
|
eleq1d |
|
60 |
46 58 59
|
3bitr4d |
|
61 |
60
|
ex |
|
62 |
43 42 61
|
pm5.21ndd |
|
63 |
29
|
reseq1d |
|
64 |
63
|
eleq1d |
|
65 |
63
|
eleq1d |
|
66 |
62 64 65
|
3bitr4d |
|
67 |
3 4 5 6 7 8 9 12 13 31 66
|
prdsbnd2 |
|
68 |
|
eqid |
|
69 |
1 68
|
pwsval |
|
70 |
10 9 69
|
sylancr |
|
71 |
70
|
fveq2d |
|
72 |
71
|
reseq1d |
|
73 |
2 72
|
eqtrid |
|
74 |
73
|
eleq1d |
|
75 |
73
|
eleq1d |
|
76 |
67 74 75
|
3bitr4d |
|