| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. ( -u _pi (,] _pi ) ) |
| 2 |
|
pire |
|- _pi e. RR |
| 3 |
2
|
renegcli |
|- -u _pi e. RR |
| 4 |
3
|
rexri |
|- -u _pi e. RR* |
| 5 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( A e. ( -u _pi (,] _pi ) <-> ( A e. RR /\ -u _pi < A /\ A <_ _pi ) ) ) |
| 6 |
4 2 5
|
mp2an |
|- ( A e. ( -u _pi (,] _pi ) <-> ( A e. RR /\ -u _pi < A /\ A <_ _pi ) ) |
| 7 |
1 6
|
sylib |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> ( A e. RR /\ -u _pi < A /\ A <_ _pi ) ) |
| 8 |
7
|
simp1d |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. RR ) |
| 9 |
|
0re |
|- 0 e. RR |
| 10 |
9
|
a1i |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> 0 e. RR ) |
| 11 |
8
|
adantr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A e. RR ) |
| 12 |
11
|
recnd |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A e. CC ) |
| 13 |
8
|
recnd |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. CC ) |
| 14 |
13
|
adantr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A e. CC ) |
| 15 |
|
cosneg |
|- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |
| 16 |
14 15
|
syl |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( cos ` -u A ) = ( cos ` A ) ) |
| 17 |
|
simplr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( cos ` A ) = 0 ) |
| 18 |
16 17
|
eqtrd |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( cos ` -u A ) = 0 ) |
| 19 |
8
|
renegcld |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> -u A e. RR ) |
| 20 |
19
|
adantr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u A e. RR ) |
| 21 |
|
simpr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A <_ 0 ) |
| 22 |
11
|
le0neg1d |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( A <_ 0 <-> 0 <_ -u A ) ) |
| 23 |
21 22
|
mpbid |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> 0 <_ -u A ) |
| 24 |
2
|
a1i |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> _pi e. RR ) |
| 25 |
7
|
simp2d |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> -u _pi < A ) |
| 26 |
24 8 25
|
ltnegcon1d |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> -u A < _pi ) |
| 27 |
19 24 26
|
ltled |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> -u A <_ _pi ) |
| 28 |
27
|
adantr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u A <_ _pi ) |
| 29 |
9 2
|
elicc2i |
|- ( -u A e. ( 0 [,] _pi ) <-> ( -u A e. RR /\ 0 <_ -u A /\ -u A <_ _pi ) ) |
| 30 |
20 23 28 29
|
syl3anbrc |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u A e. ( 0 [,] _pi ) ) |
| 31 |
|
coseq00topi |
|- ( -u A e. ( 0 [,] _pi ) -> ( ( cos ` -u A ) = 0 <-> -u A = ( _pi / 2 ) ) ) |
| 32 |
30 31
|
syl |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> ( ( cos ` -u A ) = 0 <-> -u A = ( _pi / 2 ) ) ) |
| 33 |
18 32
|
mpbid |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u A = ( _pi / 2 ) ) |
| 34 |
12 33
|
negcon1ad |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> -u ( _pi / 2 ) = A ) |
| 35 |
34
|
eqcomd |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A = -u ( _pi / 2 ) ) |
| 36 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 37 |
36
|
renegcli |
|- -u ( _pi / 2 ) e. RR |
| 38 |
|
prid2g |
|- ( -u ( _pi / 2 ) e. RR -> -u ( _pi / 2 ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 39 |
|
eleq1a |
|- ( -u ( _pi / 2 ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } -> ( A = -u ( _pi / 2 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |
| 40 |
37 38 39
|
mp2b |
|- ( A = -u ( _pi / 2 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 41 |
35 40
|
syl |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ A <_ 0 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 42 |
|
simplr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> ( cos ` A ) = 0 ) |
| 43 |
8
|
adantr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A e. RR ) |
| 44 |
|
simpr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> 0 <_ A ) |
| 45 |
7
|
simp3d |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A <_ _pi ) |
| 46 |
45
|
adantr |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A <_ _pi ) |
| 47 |
9 2
|
elicc2i |
|- ( A e. ( 0 [,] _pi ) <-> ( A e. RR /\ 0 <_ A /\ A <_ _pi ) ) |
| 48 |
43 44 46 47
|
syl3anbrc |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A e. ( 0 [,] _pi ) ) |
| 49 |
|
coseq00topi |
|- ( A e. ( 0 [,] _pi ) -> ( ( cos ` A ) = 0 <-> A = ( _pi / 2 ) ) ) |
| 50 |
48 49
|
syl |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> ( ( cos ` A ) = 0 <-> A = ( _pi / 2 ) ) ) |
| 51 |
42 50
|
mpbid |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A = ( _pi / 2 ) ) |
| 52 |
|
prid1g |
|- ( ( _pi / 2 ) e. RR -> ( _pi / 2 ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 53 |
|
eleq1a |
|- ( ( _pi / 2 ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } -> ( A = ( _pi / 2 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |
| 54 |
36 52 53
|
mp2b |
|- ( A = ( _pi / 2 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 55 |
51 54
|
syl |
|- ( ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) /\ 0 <_ A ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 56 |
8 10 41 55
|
lecasei |
|- ( ( A e. ( -u _pi (,] _pi ) /\ ( cos ` A ) = 0 ) -> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
| 57 |
|
elpri |
|- ( A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } -> ( A = ( _pi / 2 ) \/ A = -u ( _pi / 2 ) ) ) |
| 58 |
|
fveq2 |
|- ( A = ( _pi / 2 ) -> ( cos ` A ) = ( cos ` ( _pi / 2 ) ) ) |
| 59 |
|
coshalfpi |
|- ( cos ` ( _pi / 2 ) ) = 0 |
| 60 |
58 59
|
eqtrdi |
|- ( A = ( _pi / 2 ) -> ( cos ` A ) = 0 ) |
| 61 |
|
fveq2 |
|- ( A = -u ( _pi / 2 ) -> ( cos ` A ) = ( cos ` -u ( _pi / 2 ) ) ) |
| 62 |
|
cosneghalfpi |
|- ( cos ` -u ( _pi / 2 ) ) = 0 |
| 63 |
61 62
|
eqtrdi |
|- ( A = -u ( _pi / 2 ) -> ( cos ` A ) = 0 ) |
| 64 |
60 63
|
jaoi |
|- ( ( A = ( _pi / 2 ) \/ A = -u ( _pi / 2 ) ) -> ( cos ` A ) = 0 ) |
| 65 |
57 64
|
syl |
|- ( A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } -> ( cos ` A ) = 0 ) |
| 66 |
65
|
adantl |
|- ( ( A e. ( -u _pi (,] _pi ) /\ A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) -> ( cos ` A ) = 0 ) |
| 67 |
56 66
|
impbida |
|- ( A e. ( -u _pi (,] _pi ) -> ( ( cos ` A ) = 0 <-> A e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |