| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfac5lem.1 |  |-  A = { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } | 
						
							| 2 |  | vsnex |  |-  { w } e. _V | 
						
							| 3 |  | vex |  |-  w e. _V | 
						
							| 4 | 2 3 | xpex |  |-  ( { w } X. w ) e. _V | 
						
							| 5 |  | neeq1 |  |-  ( u = ( { w } X. w ) -> ( u =/= (/) <-> ( { w } X. w ) =/= (/) ) ) | 
						
							| 6 |  | eqeq1 |  |-  ( u = ( { w } X. w ) -> ( u = ( { t } X. t ) <-> ( { w } X. w ) = ( { t } X. t ) ) ) | 
						
							| 7 | 6 | rexbidv |  |-  ( u = ( { w } X. w ) -> ( E. t e. h u = ( { t } X. t ) <-> E. t e. h ( { w } X. w ) = ( { t } X. t ) ) ) | 
						
							| 8 | 5 7 | anbi12d |  |-  ( u = ( { w } X. w ) -> ( ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) <-> ( ( { w } X. w ) =/= (/) /\ E. t e. h ( { w } X. w ) = ( { t } X. t ) ) ) ) | 
						
							| 9 | 4 8 | elab |  |-  ( ( { w } X. w ) e. { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } <-> ( ( { w } X. w ) =/= (/) /\ E. t e. h ( { w } X. w ) = ( { t } X. t ) ) ) | 
						
							| 10 | 1 | eleq2i |  |-  ( ( { w } X. w ) e. A <-> ( { w } X. w ) e. { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } ) | 
						
							| 11 |  | xpeq2 |  |-  ( w = (/) -> ( { w } X. w ) = ( { w } X. (/) ) ) | 
						
							| 12 |  | xp0 |  |-  ( { w } X. (/) ) = (/) | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( w = (/) -> ( { w } X. w ) = (/) ) | 
						
							| 14 |  | rneq |  |-  ( ( { w } X. w ) = (/) -> ran ( { w } X. w ) = ran (/) ) | 
						
							| 15 | 3 | snnz |  |-  { w } =/= (/) | 
						
							| 16 |  | rnxp |  |-  ( { w } =/= (/) -> ran ( { w } X. w ) = w ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ran ( { w } X. w ) = w | 
						
							| 18 |  | rn0 |  |-  ran (/) = (/) | 
						
							| 19 | 14 17 18 | 3eqtr3g |  |-  ( ( { w } X. w ) = (/) -> w = (/) ) | 
						
							| 20 | 13 19 | impbii |  |-  ( w = (/) <-> ( { w } X. w ) = (/) ) | 
						
							| 21 | 20 | necon3bii |  |-  ( w =/= (/) <-> ( { w } X. w ) =/= (/) ) | 
						
							| 22 |  | df-rex |  |-  ( E. t e. h ( { w } X. w ) = ( { t } X. t ) <-> E. t ( t e. h /\ ( { w } X. w ) = ( { t } X. t ) ) ) | 
						
							| 23 |  | rneq |  |-  ( ( { w } X. w ) = ( { t } X. t ) -> ran ( { w } X. w ) = ran ( { t } X. t ) ) | 
						
							| 24 |  | vex |  |-  t e. _V | 
						
							| 25 | 24 | snnz |  |-  { t } =/= (/) | 
						
							| 26 |  | rnxp |  |-  ( { t } =/= (/) -> ran ( { t } X. t ) = t ) | 
						
							| 27 | 25 26 | ax-mp |  |-  ran ( { t } X. t ) = t | 
						
							| 28 | 23 17 27 | 3eqtr3g |  |-  ( ( { w } X. w ) = ( { t } X. t ) -> w = t ) | 
						
							| 29 |  | sneq |  |-  ( w = t -> { w } = { t } ) | 
						
							| 30 | 29 | xpeq1d |  |-  ( w = t -> ( { w } X. w ) = ( { t } X. w ) ) | 
						
							| 31 |  | xpeq2 |  |-  ( w = t -> ( { t } X. w ) = ( { t } X. t ) ) | 
						
							| 32 | 30 31 | eqtrd |  |-  ( w = t -> ( { w } X. w ) = ( { t } X. t ) ) | 
						
							| 33 | 28 32 | impbii |  |-  ( ( { w } X. w ) = ( { t } X. t ) <-> w = t ) | 
						
							| 34 |  | equcom |  |-  ( w = t <-> t = w ) | 
						
							| 35 | 33 34 | bitri |  |-  ( ( { w } X. w ) = ( { t } X. t ) <-> t = w ) | 
						
							| 36 | 35 | anbi1ci |  |-  ( ( t e. h /\ ( { w } X. w ) = ( { t } X. t ) ) <-> ( t = w /\ t e. h ) ) | 
						
							| 37 | 36 | exbii |  |-  ( E. t ( t e. h /\ ( { w } X. w ) = ( { t } X. t ) ) <-> E. t ( t = w /\ t e. h ) ) | 
						
							| 38 |  | elequ1 |  |-  ( t = w -> ( t e. h <-> w e. h ) ) | 
						
							| 39 | 38 | equsexvw |  |-  ( E. t ( t = w /\ t e. h ) <-> w e. h ) | 
						
							| 40 | 22 37 39 | 3bitrri |  |-  ( w e. h <-> E. t e. h ( { w } X. w ) = ( { t } X. t ) ) | 
						
							| 41 | 21 40 | anbi12i |  |-  ( ( w =/= (/) /\ w e. h ) <-> ( ( { w } X. w ) =/= (/) /\ E. t e. h ( { w } X. w ) = ( { t } X. t ) ) ) | 
						
							| 42 | 9 10 41 | 3bitr4i |  |-  ( ( { w } X. w ) e. A <-> ( w =/= (/) /\ w e. h ) ) |