| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffo3f.1 |
|- F/_ x F |
| 2 |
|
dffo2 |
|- ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) ) |
| 3 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 4 |
|
fnrnfv |
|- ( F Fn A -> ran F = { y | E. w e. A y = ( F ` w ) } ) |
| 5 |
|
nfcv |
|- F/_ x w |
| 6 |
1 5
|
nffv |
|- F/_ x ( F ` w ) |
| 7 |
6
|
nfeq2 |
|- F/ x y = ( F ` w ) |
| 8 |
|
nfv |
|- F/ w y = ( F ` x ) |
| 9 |
|
fveq2 |
|- ( w = x -> ( F ` w ) = ( F ` x ) ) |
| 10 |
9
|
eqeq2d |
|- ( w = x -> ( y = ( F ` w ) <-> y = ( F ` x ) ) ) |
| 11 |
7 8 10
|
cbvrexw |
|- ( E. w e. A y = ( F ` w ) <-> E. x e. A y = ( F ` x ) ) |
| 12 |
11
|
abbii |
|- { y | E. w e. A y = ( F ` w ) } = { y | E. x e. A y = ( F ` x ) } |
| 13 |
4 12
|
eqtrdi |
|- ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } ) |
| 14 |
13
|
eqeq1d |
|- ( F Fn A -> ( ran F = B <-> { y | E. x e. A y = ( F ` x ) } = B ) ) |
| 15 |
3 14
|
syl |
|- ( F : A --> B -> ( ran F = B <-> { y | E. x e. A y = ( F ` x ) } = B ) ) |
| 16 |
|
dfbi2 |
|- ( ( E. x e. A y = ( F ` x ) <-> y e. B ) <-> ( ( E. x e. A y = ( F ` x ) -> y e. B ) /\ ( y e. B -> E. x e. A y = ( F ` x ) ) ) ) |
| 17 |
|
nfcv |
|- F/_ x A |
| 18 |
|
nfcv |
|- F/_ x B |
| 19 |
1 17 18
|
nff |
|- F/ x F : A --> B |
| 20 |
|
nfv |
|- F/ x y e. B |
| 21 |
|
simpr |
|- ( ( ( F : A --> B /\ x e. A ) /\ y = ( F ` x ) ) -> y = ( F ` x ) ) |
| 22 |
|
ffvelcdm |
|- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
| 23 |
22
|
adantr |
|- ( ( ( F : A --> B /\ x e. A ) /\ y = ( F ` x ) ) -> ( F ` x ) e. B ) |
| 24 |
21 23
|
eqeltrd |
|- ( ( ( F : A --> B /\ x e. A ) /\ y = ( F ` x ) ) -> y e. B ) |
| 25 |
24
|
exp31 |
|- ( F : A --> B -> ( x e. A -> ( y = ( F ` x ) -> y e. B ) ) ) |
| 26 |
19 20 25
|
rexlimd |
|- ( F : A --> B -> ( E. x e. A y = ( F ` x ) -> y e. B ) ) |
| 27 |
26
|
biantrurd |
|- ( F : A --> B -> ( ( y e. B -> E. x e. A y = ( F ` x ) ) <-> ( ( E. x e. A y = ( F ` x ) -> y e. B ) /\ ( y e. B -> E. x e. A y = ( F ` x ) ) ) ) ) |
| 28 |
16 27
|
bitr4id |
|- ( F : A --> B -> ( ( E. x e. A y = ( F ` x ) <-> y e. B ) <-> ( y e. B -> E. x e. A y = ( F ` x ) ) ) ) |
| 29 |
28
|
albidv |
|- ( F : A --> B -> ( A. y ( E. x e. A y = ( F ` x ) <-> y e. B ) <-> A. y ( y e. B -> E. x e. A y = ( F ` x ) ) ) ) |
| 30 |
|
eqabcb |
|- ( { y | E. x e. A y = ( F ` x ) } = B <-> A. y ( E. x e. A y = ( F ` x ) <-> y e. B ) ) |
| 31 |
|
df-ral |
|- ( A. y e. B E. x e. A y = ( F ` x ) <-> A. y ( y e. B -> E. x e. A y = ( F ` x ) ) ) |
| 32 |
29 30 31
|
3bitr4g |
|- ( F : A --> B -> ( { y | E. x e. A y = ( F ` x ) } = B <-> A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 33 |
15 32
|
bitrd |
|- ( F : A --> B -> ( ran F = B <-> A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 34 |
33
|
pm5.32i |
|- ( ( F : A --> B /\ ran F = B ) <-> ( F : A --> B /\ A. y e. B E. x e. A y = ( F ` x ) ) ) |
| 35 |
2 34
|
bitri |
|- ( F : A -onto-> B <-> ( F : A --> B /\ A. y e. B E. x e. A y = ( F ` x ) ) ) |