Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( A mod N ) = 1 ) |
2 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
3 |
2
|
3ad2ant1 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> A e. RR ) |
4 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
5 |
4
|
3ad2ant2 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> N e. RR ) |
6 |
|
1lt2 |
|- 1 < 2 |
7 |
|
1red |
|- ( N e. NN -> 1 e. RR ) |
8 |
|
2re |
|- 2 e. RR |
9 |
8
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
10 |
7 9 4
|
3jca |
|- ( N e. NN -> ( 1 e. RR /\ 2 e. RR /\ N e. RR ) ) |
11 |
|
lttr |
|- ( ( 1 e. RR /\ 2 e. RR /\ N e. RR ) -> ( ( 1 < 2 /\ 2 < N ) -> 1 < N ) ) |
12 |
10 11
|
syl |
|- ( N e. NN -> ( ( 1 < 2 /\ 2 < N ) -> 1 < N ) ) |
13 |
6 12
|
mpani |
|- ( N e. NN -> ( 2 < N -> 1 < N ) ) |
14 |
13
|
a1i |
|- ( A e. ZZ -> ( N e. NN -> ( 2 < N -> 1 < N ) ) ) |
15 |
14
|
3imp |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 1 < N ) |
16 |
3 5 15
|
3jca |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A e. RR /\ N e. RR /\ 1 < N ) ) |
17 |
16
|
adantl |
|- ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( A e. RR /\ N e. RR /\ 1 < N ) ) |
18 |
|
m1mod0mod1 |
|- ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( ( A - 1 ) mod N ) = 0 <-> ( A mod N ) = 1 ) ) |
19 |
17 18
|
syl |
|- ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( ( A - 1 ) mod N ) = 0 <-> ( A mod N ) = 1 ) ) |
20 |
1 19
|
mpbird |
|- ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A - 1 ) mod N ) = 0 ) |
21 |
1 20
|
oveq12d |
|- ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) = ( 1 - 0 ) ) |
22 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
23 |
22
|
breq1i |
|- ( 2 < N <-> ( 1 + 1 ) < N ) |
24 |
23
|
biimpi |
|- ( 2 < N -> ( 1 + 1 ) < N ) |
25 |
24
|
adantl |
|- ( ( N e. NN /\ 2 < N ) -> ( 1 + 1 ) < N ) |
26 |
|
1red |
|- ( ( N e. NN /\ 2 < N ) -> 1 e. RR ) |
27 |
4
|
adantr |
|- ( ( N e. NN /\ 2 < N ) -> N e. RR ) |
28 |
26 26 27
|
ltaddsub2d |
|- ( ( N e. NN /\ 2 < N ) -> ( ( 1 + 1 ) < N <-> 1 < ( N - 1 ) ) ) |
29 |
25 28
|
mpbid |
|- ( ( N e. NN /\ 2 < N ) -> 1 < ( N - 1 ) ) |
30 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
31 |
30
|
breq1i |
|- ( ( 1 - 0 ) < ( N - 1 ) <-> 1 < ( N - 1 ) ) |
32 |
29 31
|
sylibr |
|- ( ( N e. NN /\ 2 < N ) -> ( 1 - 0 ) < ( N - 1 ) ) |
33 |
32
|
3adant1 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( 1 - 0 ) < ( N - 1 ) ) |
34 |
33
|
adantl |
|- ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 1 - 0 ) < ( N - 1 ) ) |
35 |
21 34
|
eqbrtrd |
|- ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) |
36 |
|
zmodfz |
|- ( ( A e. ZZ /\ N e. NN ) -> ( A mod N ) e. ( 0 ... ( N - 1 ) ) ) |
37 |
36
|
3adant3 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A mod N ) e. ( 0 ... ( N - 1 ) ) ) |
38 |
|
elfzle2 |
|- ( ( A mod N ) e. ( 0 ... ( N - 1 ) ) -> ( A mod N ) <_ ( N - 1 ) ) |
39 |
37 38
|
syl |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A mod N ) <_ ( N - 1 ) ) |
40 |
39
|
adantl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( A mod N ) <_ ( N - 1 ) ) |
41 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
42 |
41
|
3ad2ant2 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> N e. RR+ ) |
43 |
3 42
|
modcld |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A mod N ) e. RR ) |
44 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
45 |
4 44
|
syl |
|- ( N e. NN -> ( N - 1 ) e. RR ) |
46 |
45
|
3ad2ant2 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( N - 1 ) e. RR ) |
47 |
|
peano2zm |
|- ( A e. ZZ -> ( A - 1 ) e. ZZ ) |
48 |
47
|
zred |
|- ( A e. ZZ -> ( A - 1 ) e. RR ) |
49 |
48
|
3ad2ant1 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A - 1 ) e. RR ) |
50 |
49 42
|
modcld |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A - 1 ) mod N ) e. RR ) |
51 |
43 46 50
|
3jca |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) e. RR /\ ( N - 1 ) e. RR /\ ( ( A - 1 ) mod N ) e. RR ) ) |
52 |
51
|
adantl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) e. RR /\ ( N - 1 ) e. RR /\ ( ( A - 1 ) mod N ) e. RR ) ) |
53 |
|
lesub1 |
|- ( ( ( A mod N ) e. RR /\ ( N - 1 ) e. RR /\ ( ( A - 1 ) mod N ) e. RR ) -> ( ( A mod N ) <_ ( N - 1 ) <-> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) ) ) |
54 |
52 53
|
syl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) <_ ( N - 1 ) <-> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) ) ) |
55 |
40 54
|
mpbid |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) ) |
56 |
49 42
|
jca |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A - 1 ) e. RR /\ N e. RR+ ) ) |
57 |
56
|
adantl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A - 1 ) e. RR /\ N e. RR+ ) ) |
58 |
|
modge0 |
|- ( ( ( A - 1 ) e. RR /\ N e. RR+ ) -> 0 <_ ( ( A - 1 ) mod N ) ) |
59 |
57 58
|
syl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> 0 <_ ( ( A - 1 ) mod N ) ) |
60 |
16 18
|
syl |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( ( A - 1 ) mod N ) = 0 <-> ( A mod N ) = 1 ) ) |
61 |
60
|
bicomd |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) = 1 <-> ( ( A - 1 ) mod N ) = 0 ) ) |
62 |
61
|
notbid |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( -. ( A mod N ) = 1 <-> -. ( ( A - 1 ) mod N ) = 0 ) ) |
63 |
62
|
biimpac |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> -. ( ( A - 1 ) mod N ) = 0 ) |
64 |
63
|
neqned |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A - 1 ) mod N ) =/= 0 ) |
65 |
59 64
|
jca |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 0 <_ ( ( A - 1 ) mod N ) /\ ( ( A - 1 ) mod N ) =/= 0 ) ) |
66 |
|
0red |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 0 e. RR ) |
67 |
66 50
|
jca |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( 0 e. RR /\ ( ( A - 1 ) mod N ) e. RR ) ) |
68 |
67
|
adantl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 0 e. RR /\ ( ( A - 1 ) mod N ) e. RR ) ) |
69 |
|
ltlen |
|- ( ( 0 e. RR /\ ( ( A - 1 ) mod N ) e. RR ) -> ( 0 < ( ( A - 1 ) mod N ) <-> ( 0 <_ ( ( A - 1 ) mod N ) /\ ( ( A - 1 ) mod N ) =/= 0 ) ) ) |
70 |
68 69
|
syl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 0 < ( ( A - 1 ) mod N ) <-> ( 0 <_ ( ( A - 1 ) mod N ) /\ ( ( A - 1 ) mod N ) =/= 0 ) ) ) |
71 |
65 70
|
mpbird |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> 0 < ( ( A - 1 ) mod N ) ) |
72 |
50 46
|
jca |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( ( A - 1 ) mod N ) e. RR /\ ( N - 1 ) e. RR ) ) |
73 |
72
|
adantl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( ( A - 1 ) mod N ) e. RR /\ ( N - 1 ) e. RR ) ) |
74 |
|
ltsubpos |
|- ( ( ( ( A - 1 ) mod N ) e. RR /\ ( N - 1 ) e. RR ) -> ( 0 < ( ( A - 1 ) mod N ) <-> ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) ) |
75 |
73 74
|
syl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 0 < ( ( A - 1 ) mod N ) <-> ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) ) |
76 |
71 75
|
mpbid |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) |
77 |
43 50
|
resubcld |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) e. RR ) |
78 |
46 50
|
resubcld |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) e. RR ) |
79 |
77 78 46
|
3jca |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( N - 1 ) e. RR ) ) |
80 |
79
|
adantl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( N - 1 ) e. RR ) ) |
81 |
|
lelttr |
|- ( ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( N - 1 ) e. RR ) -> ( ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) ) |
82 |
80 81
|
syl |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) ) |
83 |
55 76 82
|
mp2and |
|- ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) |
84 |
35 83
|
pm2.61ian |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) |