| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( A mod N ) = 1 ) | 
						
							| 2 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> A e. RR ) | 
						
							| 4 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> N e. RR ) | 
						
							| 6 |  | 1lt2 |  |-  1 < 2 | 
						
							| 7 |  | 1red |  |-  ( N e. NN -> 1 e. RR ) | 
						
							| 8 |  | 2re |  |-  2 e. RR | 
						
							| 9 | 8 | a1i |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 10 | 7 9 4 | 3jca |  |-  ( N e. NN -> ( 1 e. RR /\ 2 e. RR /\ N e. RR ) ) | 
						
							| 11 |  | lttr |  |-  ( ( 1 e. RR /\ 2 e. RR /\ N e. RR ) -> ( ( 1 < 2 /\ 2 < N ) -> 1 < N ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( N e. NN -> ( ( 1 < 2 /\ 2 < N ) -> 1 < N ) ) | 
						
							| 13 | 6 12 | mpani |  |-  ( N e. NN -> ( 2 < N -> 1 < N ) ) | 
						
							| 14 | 13 | a1i |  |-  ( A e. ZZ -> ( N e. NN -> ( 2 < N -> 1 < N ) ) ) | 
						
							| 15 | 14 | 3imp |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 1 < N ) | 
						
							| 16 | 3 5 15 | 3jca |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A e. RR /\ N e. RR /\ 1 < N ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( A e. RR /\ N e. RR /\ 1 < N ) ) | 
						
							| 18 |  | m1mod0mod1 |  |-  ( ( A e. RR /\ N e. RR /\ 1 < N ) -> ( ( ( A - 1 ) mod N ) = 0 <-> ( A mod N ) = 1 ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( ( A - 1 ) mod N ) = 0 <-> ( A mod N ) = 1 ) ) | 
						
							| 20 | 1 19 | mpbird |  |-  ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A - 1 ) mod N ) = 0 ) | 
						
							| 21 | 1 20 | oveq12d |  |-  ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) = ( 1 - 0 ) ) | 
						
							| 22 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 23 | 22 | breq1i |  |-  ( 2 < N <-> ( 1 + 1 ) < N ) | 
						
							| 24 | 23 | biimpi |  |-  ( 2 < N -> ( 1 + 1 ) < N ) | 
						
							| 25 | 24 | adantl |  |-  ( ( N e. NN /\ 2 < N ) -> ( 1 + 1 ) < N ) | 
						
							| 26 |  | 1red |  |-  ( ( N e. NN /\ 2 < N ) -> 1 e. RR ) | 
						
							| 27 | 4 | adantr |  |-  ( ( N e. NN /\ 2 < N ) -> N e. RR ) | 
						
							| 28 | 26 26 27 | ltaddsub2d |  |-  ( ( N e. NN /\ 2 < N ) -> ( ( 1 + 1 ) < N <-> 1 < ( N - 1 ) ) ) | 
						
							| 29 | 25 28 | mpbid |  |-  ( ( N e. NN /\ 2 < N ) -> 1 < ( N - 1 ) ) | 
						
							| 30 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 31 | 30 | breq1i |  |-  ( ( 1 - 0 ) < ( N - 1 ) <-> 1 < ( N - 1 ) ) | 
						
							| 32 | 29 31 | sylibr |  |-  ( ( N e. NN /\ 2 < N ) -> ( 1 - 0 ) < ( N - 1 ) ) | 
						
							| 33 | 32 | 3adant1 |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( 1 - 0 ) < ( N - 1 ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 1 - 0 ) < ( N - 1 ) ) | 
						
							| 35 | 21 34 | eqbrtrd |  |-  ( ( ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) | 
						
							| 36 |  | zmodfz |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( A mod N ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 37 | 36 | 3adant3 |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A mod N ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 38 |  | elfzle2 |  |-  ( ( A mod N ) e. ( 0 ... ( N - 1 ) ) -> ( A mod N ) <_ ( N - 1 ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A mod N ) <_ ( N - 1 ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( A mod N ) <_ ( N - 1 ) ) | 
						
							| 41 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 42 | 41 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> N e. RR+ ) | 
						
							| 43 | 3 42 | modcld |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A mod N ) e. RR ) | 
						
							| 44 |  | peano2rem |  |-  ( N e. RR -> ( N - 1 ) e. RR ) | 
						
							| 45 | 4 44 | syl |  |-  ( N e. NN -> ( N - 1 ) e. RR ) | 
						
							| 46 | 45 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( N - 1 ) e. RR ) | 
						
							| 47 |  | peano2zm |  |-  ( A e. ZZ -> ( A - 1 ) e. ZZ ) | 
						
							| 48 | 47 | zred |  |-  ( A e. ZZ -> ( A - 1 ) e. RR ) | 
						
							| 49 | 48 | 3ad2ant1 |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A - 1 ) e. RR ) | 
						
							| 50 | 49 42 | modcld |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A - 1 ) mod N ) e. RR ) | 
						
							| 51 | 43 46 50 | 3jca |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) e. RR /\ ( N - 1 ) e. RR /\ ( ( A - 1 ) mod N ) e. RR ) ) | 
						
							| 52 | 51 | adantl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) e. RR /\ ( N - 1 ) e. RR /\ ( ( A - 1 ) mod N ) e. RR ) ) | 
						
							| 53 |  | lesub1 |  |-  ( ( ( A mod N ) e. RR /\ ( N - 1 ) e. RR /\ ( ( A - 1 ) mod N ) e. RR ) -> ( ( A mod N ) <_ ( N - 1 ) <-> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) ) ) | 
						
							| 54 | 52 53 | syl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) <_ ( N - 1 ) <-> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) ) ) | 
						
							| 55 | 40 54 | mpbid |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) ) | 
						
							| 56 | 49 42 | jca |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A - 1 ) e. RR /\ N e. RR+ ) ) | 
						
							| 57 | 56 | adantl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A - 1 ) e. RR /\ N e. RR+ ) ) | 
						
							| 58 |  | modge0 |  |-  ( ( ( A - 1 ) e. RR /\ N e. RR+ ) -> 0 <_ ( ( A - 1 ) mod N ) ) | 
						
							| 59 | 57 58 | syl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> 0 <_ ( ( A - 1 ) mod N ) ) | 
						
							| 60 | 16 18 | syl |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( ( A - 1 ) mod N ) = 0 <-> ( A mod N ) = 1 ) ) | 
						
							| 61 | 60 | bicomd |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) = 1 <-> ( ( A - 1 ) mod N ) = 0 ) ) | 
						
							| 62 | 61 | notbid |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( -. ( A mod N ) = 1 <-> -. ( ( A - 1 ) mod N ) = 0 ) ) | 
						
							| 63 | 62 | biimpac |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> -. ( ( A - 1 ) mod N ) = 0 ) | 
						
							| 64 | 63 | neqned |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A - 1 ) mod N ) =/= 0 ) | 
						
							| 65 | 59 64 | jca |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 0 <_ ( ( A - 1 ) mod N ) /\ ( ( A - 1 ) mod N ) =/= 0 ) ) | 
						
							| 66 |  | 0red |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 0 e. RR ) | 
						
							| 67 | 66 50 | jca |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( 0 e. RR /\ ( ( A - 1 ) mod N ) e. RR ) ) | 
						
							| 68 | 67 | adantl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 0 e. RR /\ ( ( A - 1 ) mod N ) e. RR ) ) | 
						
							| 69 |  | ltlen |  |-  ( ( 0 e. RR /\ ( ( A - 1 ) mod N ) e. RR ) -> ( 0 < ( ( A - 1 ) mod N ) <-> ( 0 <_ ( ( A - 1 ) mod N ) /\ ( ( A - 1 ) mod N ) =/= 0 ) ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 0 < ( ( A - 1 ) mod N ) <-> ( 0 <_ ( ( A - 1 ) mod N ) /\ ( ( A - 1 ) mod N ) =/= 0 ) ) ) | 
						
							| 71 | 65 70 | mpbird |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> 0 < ( ( A - 1 ) mod N ) ) | 
						
							| 72 | 50 46 | jca |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( ( A - 1 ) mod N ) e. RR /\ ( N - 1 ) e. RR ) ) | 
						
							| 73 | 72 | adantl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( ( A - 1 ) mod N ) e. RR /\ ( N - 1 ) e. RR ) ) | 
						
							| 74 |  | ltsubpos |  |-  ( ( ( ( A - 1 ) mod N ) e. RR /\ ( N - 1 ) e. RR ) -> ( 0 < ( ( A - 1 ) mod N ) <-> ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( 0 < ( ( A - 1 ) mod N ) <-> ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) ) | 
						
							| 76 | 71 75 | mpbid |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) | 
						
							| 77 | 43 50 | resubcld |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) e. RR ) | 
						
							| 78 | 46 50 | resubcld |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) e. RR ) | 
						
							| 79 | 77 78 46 | 3jca |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( N - 1 ) e. RR ) ) | 
						
							| 80 | 79 | adantl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( N - 1 ) e. RR ) ) | 
						
							| 81 |  | lelttr |  |-  ( ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) e. RR /\ ( N - 1 ) e. RR ) -> ( ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) ) | 
						
							| 82 | 80 81 | syl |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( ( ( A mod N ) - ( ( A - 1 ) mod N ) ) <_ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) /\ ( ( N - 1 ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) ) | 
						
							| 83 | 55 76 82 | mp2and |  |-  ( ( -. ( A mod N ) = 1 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) | 
						
							| 84 | 35 83 | pm2.61ian |  |-  ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) |