| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2zm |
|- ( A e. ZZ -> ( A - 1 ) e. ZZ ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A - 1 ) e. ZZ ) |
| 3 |
2
|
zred |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A - 1 ) e. RR ) |
| 4 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 5 |
4
|
3ad2ant2 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> N e. RR+ ) |
| 6 |
3 5
|
modcld |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A - 1 ) mod N ) e. RR ) |
| 7 |
6
|
recnd |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A - 1 ) mod N ) e. CC ) |
| 8 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> A e. RR ) |
| 10 |
9 5
|
modcld |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A mod N ) e. RR ) |
| 11 |
10
|
recnd |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( A mod N ) e. CC ) |
| 12 |
7 11
|
negsubdi2d |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> -u ( ( ( A - 1 ) mod N ) - ( A mod N ) ) = ( ( A mod N ) - ( ( A - 1 ) mod N ) ) ) |
| 13 |
|
m1modmmod |
|- ( ( A e. ZZ /\ N e. NN ) -> ( ( ( A - 1 ) mod N ) - ( A mod N ) ) = if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) ) |
| 14 |
13
|
3adant3 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( ( A - 1 ) mod N ) - ( A mod N ) ) = if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) ) |
| 15 |
14
|
negeqd |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> -u ( ( ( A - 1 ) mod N ) - ( A mod N ) ) = -u if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) ) |
| 16 |
12 15
|
eqtr3d |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) = -u if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) ) |
| 17 |
|
iftrue |
|- ( ( A mod N ) = 0 -> if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) = ( N - 1 ) ) |
| 18 |
17
|
adantr |
|- ( ( ( A mod N ) = 0 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) = ( N - 1 ) ) |
| 19 |
18
|
negeqd |
|- ( ( ( A mod N ) = 0 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> -u if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) = -u ( N - 1 ) ) |
| 20 |
|
1red |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 1 e. RR ) |
| 21 |
|
2re |
|- 2 e. RR |
| 22 |
21
|
a1i |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 2 e. RR ) |
| 23 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 24 |
23
|
3ad2ant2 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> N e. RR ) |
| 25 |
|
1lt2 |
|- 1 < 2 |
| 26 |
25
|
a1i |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 1 < 2 ) |
| 27 |
|
simp3 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 2 < N ) |
| 28 |
20 22 24 26 27
|
lttrd |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 1 < N ) |
| 29 |
|
difrp |
|- ( ( 1 e. RR /\ N e. RR ) -> ( 1 < N <-> ( N - 1 ) e. RR+ ) ) |
| 30 |
20 24 29
|
syl2anc |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( 1 < N <-> ( N - 1 ) e. RR+ ) ) |
| 31 |
28 30
|
mpbid |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( N - 1 ) e. RR+ ) |
| 32 |
|
neglt |
|- ( ( N - 1 ) e. RR+ -> -u ( N - 1 ) < ( N - 1 ) ) |
| 33 |
31 32
|
syl |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> -u ( N - 1 ) < ( N - 1 ) ) |
| 34 |
33
|
adantl |
|- ( ( ( A mod N ) = 0 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> -u ( N - 1 ) < ( N - 1 ) ) |
| 35 |
19 34
|
eqbrtrd |
|- ( ( ( A mod N ) = 0 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> -u if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) < ( N - 1 ) ) |
| 36 |
|
iffalse |
|- ( -. ( A mod N ) = 0 -> if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) = -u 1 ) |
| 37 |
36
|
adantr |
|- ( ( -. ( A mod N ) = 0 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) = -u 1 ) |
| 38 |
37
|
negeqd |
|- ( ( -. ( A mod N ) = 0 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> -u if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) = -u -u 1 ) |
| 39 |
|
negneg1e1 |
|- -u -u 1 = 1 |
| 40 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 41 |
40
|
breq1i |
|- ( 2 < N <-> ( 1 + 1 ) < N ) |
| 42 |
41
|
biimpi |
|- ( 2 < N -> ( 1 + 1 ) < N ) |
| 43 |
42
|
3ad2ant3 |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( 1 + 1 ) < N ) |
| 44 |
20 20 24
|
ltaddsub2d |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( 1 + 1 ) < N <-> 1 < ( N - 1 ) ) ) |
| 45 |
43 44
|
mpbid |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> 1 < ( N - 1 ) ) |
| 46 |
39 45
|
eqbrtrid |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> -u -u 1 < ( N - 1 ) ) |
| 47 |
46
|
adantl |
|- ( ( -. ( A mod N ) = 0 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> -u -u 1 < ( N - 1 ) ) |
| 48 |
38 47
|
eqbrtrd |
|- ( ( -. ( A mod N ) = 0 /\ ( A e. ZZ /\ N e. NN /\ 2 < N ) ) -> -u if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) < ( N - 1 ) ) |
| 49 |
35 48
|
pm2.61ian |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> -u if ( ( A mod N ) = 0 , ( N - 1 ) , -u 1 ) < ( N - 1 ) ) |
| 50 |
16 49
|
eqbrtrd |
|- ( ( A e. ZZ /\ N e. NN /\ 2 < N ) -> ( ( A mod N ) - ( ( A - 1 ) mod N ) ) < ( N - 1 ) ) |