| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ditgsplit.x |
|- ( ph -> X e. RR ) |
| 2 |
|
ditgsplit.y |
|- ( ph -> Y e. RR ) |
| 3 |
|
ditgsplit.a |
|- ( ph -> A e. ( X [,] Y ) ) |
| 4 |
|
ditgsplit.b |
|- ( ph -> B e. ( X [,] Y ) ) |
| 5 |
|
ditgsplit.c |
|- ( ph -> C e. ( X [,] Y ) ) |
| 6 |
|
ditgsplit.d |
|- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. V ) |
| 7 |
|
ditgsplit.i |
|- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. L^1 ) |
| 8 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
| 9 |
1 2 8
|
syl2anc |
|- ( ph -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
| 10 |
3 9
|
mpbid |
|- ( ph -> ( A e. RR /\ X <_ A /\ A <_ Y ) ) |
| 11 |
10
|
simp1d |
|- ( ph -> A e. RR ) |
| 12 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
| 13 |
1 2 12
|
syl2anc |
|- ( ph -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
| 14 |
4 13
|
mpbid |
|- ( ph -> ( B e. RR /\ X <_ B /\ B <_ Y ) ) |
| 15 |
14
|
simp1d |
|- ( ph -> B e. RR ) |
| 16 |
11
|
adantr |
|- ( ( ph /\ A <_ B ) -> A e. RR ) |
| 17 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( C e. ( X [,] Y ) <-> ( C e. RR /\ X <_ C /\ C <_ Y ) ) ) |
| 18 |
1 2 17
|
syl2anc |
|- ( ph -> ( C e. ( X [,] Y ) <-> ( C e. RR /\ X <_ C /\ C <_ Y ) ) ) |
| 19 |
5 18
|
mpbid |
|- ( ph -> ( C e. RR /\ X <_ C /\ C <_ Y ) ) |
| 20 |
19
|
simp1d |
|- ( ph -> C e. RR ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ A <_ B ) -> C e. RR ) |
| 22 |
15
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> B e. RR ) |
| 23 |
20
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> C e. RR ) |
| 24 |
|
biid |
|- ( ( A <_ B /\ B <_ C ) <-> ( A <_ B /\ B <_ C ) ) |
| 25 |
1 2 3 4 5 6 7 24
|
ditgsplitlem |
|- ( ( ( ph /\ A <_ B ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 26 |
25
|
adantlr |
|- ( ( ( ( ph /\ A <_ B ) /\ A <_ C ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 27 |
|
biid |
|- ( ( A <_ C /\ C <_ B ) <-> ( A <_ C /\ C <_ B ) ) |
| 28 |
1 2 3 5 4 6 7 27
|
ditgsplitlem |
|- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> B ] D _d x = ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) ) |
| 29 |
28
|
oveq1d |
|- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) ) |
| 30 |
1 2 3 5 6 7
|
ditgcl |
|- ( ph -> S_ [ A -> C ] D _d x e. CC ) |
| 31 |
1 2 5 4 6 7
|
ditgcl |
|- ( ph -> S_ [ C -> B ] D _d x e. CC ) |
| 32 |
1 2 4 5 6 7
|
ditgcl |
|- ( ph -> S_ [ B -> C ] D _d x e. CC ) |
| 33 |
30 31 32
|
addassd |
|- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) ) ) |
| 34 |
1 2 5 4 6 7
|
ditgswap |
|- ( ph -> S_ [ B -> C ] D _d x = -u S_ [ C -> B ] D _d x ) |
| 35 |
34
|
oveq2d |
|- ( ph -> ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ C -> B ] D _d x + -u S_ [ C -> B ] D _d x ) ) |
| 36 |
31
|
negidd |
|- ( ph -> ( S_ [ C -> B ] D _d x + -u S_ [ C -> B ] D _d x ) = 0 ) |
| 37 |
35 36
|
eqtrd |
|- ( ph -> ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) = 0 ) |
| 38 |
37
|
oveq2d |
|- ( ph -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> B ] D _d x + S_ [ B -> C ] D _d x ) ) = ( S_ [ A -> C ] D _d x + 0 ) ) |
| 39 |
30
|
addridd |
|- ( ph -> ( S_ [ A -> C ] D _d x + 0 ) = S_ [ A -> C ] D _d x ) |
| 40 |
33 38 39
|
3eqtrd |
|- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 42 |
29 41
|
eqtr2d |
|- ( ( ( ph /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 43 |
42
|
adantllr |
|- ( ( ( ( ph /\ A <_ B ) /\ A <_ C ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 44 |
22 23 26 43
|
lecasei |
|- ( ( ( ph /\ A <_ B ) /\ A <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 45 |
40
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 46 |
|
ancom |
|- ( ( A <_ B /\ C <_ A ) <-> ( C <_ A /\ A <_ B ) ) |
| 47 |
1 2 5 3 4 6 7 46
|
ditgsplitlem |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> S_ [ C -> B ] D _d x = ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) |
| 48 |
47
|
oveq2d |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
| 49 |
1 2 3 5 6 7
|
ditgswap |
|- ( ph -> S_ [ C -> A ] D _d x = -u S_ [ A -> C ] D _d x ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) = ( S_ [ A -> C ] D _d x + -u S_ [ A -> C ] D _d x ) ) |
| 51 |
30
|
negidd |
|- ( ph -> ( S_ [ A -> C ] D _d x + -u S_ [ A -> C ] D _d x ) = 0 ) |
| 52 |
50 51
|
eqtrd |
|- ( ph -> ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) = 0 ) |
| 53 |
52
|
oveq1d |
|- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( 0 + S_ [ A -> B ] D _d x ) ) |
| 54 |
1 2 5 3 6 7
|
ditgcl |
|- ( ph -> S_ [ C -> A ] D _d x e. CC ) |
| 55 |
1 2 3 4 6 7
|
ditgcl |
|- ( ph -> S_ [ A -> B ] D _d x e. CC ) |
| 56 |
30 54 55
|
addassd |
|- ( ph -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
| 57 |
55
|
addlidd |
|- ( ph -> ( 0 + S_ [ A -> B ] D _d x ) = S_ [ A -> B ] D _d x ) |
| 58 |
53 56 57
|
3eqtr3d |
|- ( ph -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
| 59 |
58
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
| 60 |
48 59
|
eqtrd |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = S_ [ A -> B ] D _d x ) |
| 61 |
60
|
oveq1d |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 62 |
45 61
|
eqtr3d |
|- ( ( ( ph /\ A <_ B ) /\ C <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 63 |
16 21 44 62
|
lecasei |
|- ( ( ph /\ A <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 64 |
11
|
adantr |
|- ( ( ph /\ B <_ A ) -> A e. RR ) |
| 65 |
20
|
adantr |
|- ( ( ph /\ B <_ A ) -> C e. RR ) |
| 66 |
|
biid |
|- ( ( B <_ A /\ A <_ C ) <-> ( B <_ A /\ A <_ C ) ) |
| 67 |
1 2 4 3 5 6 7 66
|
ditgsplitlem |
|- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> S_ [ B -> C ] D _d x = ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) |
| 68 |
67
|
oveq2d |
|- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
| 69 |
1 2 3 4 6 7
|
ditgswap |
|- ( ph -> S_ [ B -> A ] D _d x = -u S_ [ A -> B ] D _d x ) |
| 70 |
69
|
oveq2d |
|- ( ph -> ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) = ( S_ [ A -> B ] D _d x + -u S_ [ A -> B ] D _d x ) ) |
| 71 |
55
|
negidd |
|- ( ph -> ( S_ [ A -> B ] D _d x + -u S_ [ A -> B ] D _d x ) = 0 ) |
| 72 |
70 71
|
eqtrd |
|- ( ph -> ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) = 0 ) |
| 73 |
72
|
oveq1d |
|- ( ph -> ( ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( 0 + S_ [ A -> C ] D _d x ) ) |
| 74 |
1 2 4 3 6 7
|
ditgcl |
|- ( ph -> S_ [ B -> A ] D _d x e. CC ) |
| 75 |
55 74 30
|
addassd |
|- ( ph -> ( ( S_ [ A -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
| 76 |
30
|
addlidd |
|- ( ph -> ( 0 + S_ [ A -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 77 |
73 75 76
|
3eqtr3d |
|- ( ph -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
| 78 |
77
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
| 79 |
68 78
|
eqtr2d |
|- ( ( ( ph /\ B <_ A ) /\ A <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 80 |
15
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> B e. RR ) |
| 81 |
20
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> C e. RR ) |
| 82 |
|
ancom |
|- ( ( C <_ A /\ B <_ C ) <-> ( B <_ C /\ C <_ A ) ) |
| 83 |
1 2 4 5 3 6 7 82
|
ditgsplitlem |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ B -> A ] D _d x = ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) ) |
| 84 |
83
|
oveq1d |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) = ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) ) |
| 85 |
32 54 30
|
addassd |
|- ( ph -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = ( S_ [ B -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
| 86 |
1 2 5 3 6 7
|
ditgswap |
|- ( ph -> S_ [ A -> C ] D _d x = -u S_ [ C -> A ] D _d x ) |
| 87 |
86
|
oveq2d |
|- ( ph -> ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) = ( S_ [ C -> A ] D _d x + -u S_ [ C -> A ] D _d x ) ) |
| 88 |
54
|
negidd |
|- ( ph -> ( S_ [ C -> A ] D _d x + -u S_ [ C -> A ] D _d x ) = 0 ) |
| 89 |
87 88
|
eqtrd |
|- ( ph -> ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) = 0 ) |
| 90 |
89
|
oveq2d |
|- ( ph -> ( S_ [ B -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = ( S_ [ B -> C ] D _d x + 0 ) ) |
| 91 |
32
|
addridd |
|- ( ph -> ( S_ [ B -> C ] D _d x + 0 ) = S_ [ B -> C ] D _d x ) |
| 92 |
85 90 91
|
3eqtrd |
|- ( ph -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = S_ [ B -> C ] D _d x ) |
| 93 |
92
|
ad2antrr |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( ( S_ [ B -> C ] D _d x + S_ [ C -> A ] D _d x ) + S_ [ A -> C ] D _d x ) = S_ [ B -> C ] D _d x ) |
| 94 |
84 93
|
eqtr2d |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ B -> C ] D _d x = ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) |
| 95 |
94
|
oveq2d |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) ) |
| 96 |
77
|
ad2antrr |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> ( S_ [ A -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> C ] D _d x ) ) = S_ [ A -> C ] D _d x ) |
| 97 |
95 96
|
eqtr2d |
|- ( ( ( ph /\ C <_ A ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 98 |
97
|
adantllr |
|- ( ( ( ( ph /\ B <_ A ) /\ C <_ A ) /\ B <_ C ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 99 |
|
ancom |
|- ( ( B <_ A /\ C <_ B ) <-> ( C <_ B /\ B <_ A ) ) |
| 100 |
1 2 5 4 3 6 7 99
|
ditgsplitlem |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ C -> A ] D _d x = ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) ) |
| 101 |
100
|
oveq1d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) = ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) ) |
| 102 |
31 74 55
|
addassd |
|- ( ph -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = ( S_ [ C -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
| 103 |
1 2 4 3 6 7
|
ditgswap |
|- ( ph -> S_ [ A -> B ] D _d x = -u S_ [ B -> A ] D _d x ) |
| 104 |
103
|
oveq2d |
|- ( ph -> ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) = ( S_ [ B -> A ] D _d x + -u S_ [ B -> A ] D _d x ) ) |
| 105 |
74
|
negidd |
|- ( ph -> ( S_ [ B -> A ] D _d x + -u S_ [ B -> A ] D _d x ) = 0 ) |
| 106 |
104 105
|
eqtrd |
|- ( ph -> ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) = 0 ) |
| 107 |
106
|
oveq2d |
|- ( ph -> ( S_ [ C -> B ] D _d x + ( S_ [ B -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = ( S_ [ C -> B ] D _d x + 0 ) ) |
| 108 |
31
|
addridd |
|- ( ph -> ( S_ [ C -> B ] D _d x + 0 ) = S_ [ C -> B ] D _d x ) |
| 109 |
102 107 108
|
3eqtrd |
|- ( ph -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = S_ [ C -> B ] D _d x ) |
| 110 |
109
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( ( S_ [ C -> B ] D _d x + S_ [ B -> A ] D _d x ) + S_ [ A -> B ] D _d x ) = S_ [ C -> B ] D _d x ) |
| 111 |
101 110
|
eqtr2d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ C -> B ] D _d x = ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) |
| 112 |
111
|
oveq2d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) = ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) ) |
| 113 |
58
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> C ] D _d x + ( S_ [ C -> A ] D _d x + S_ [ A -> B ] D _d x ) ) = S_ [ A -> B ] D _d x ) |
| 114 |
112 113
|
eqtr2d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ A -> B ] D _d x = ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) ) |
| 115 |
114
|
oveq1d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) = ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) ) |
| 116 |
40
|
ad2antrr |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> ( ( S_ [ A -> C ] D _d x + S_ [ C -> B ] D _d x ) + S_ [ B -> C ] D _d x ) = S_ [ A -> C ] D _d x ) |
| 117 |
115 116
|
eqtr2d |
|- ( ( ( ph /\ B <_ A ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 118 |
117
|
adantlr |
|- ( ( ( ( ph /\ B <_ A ) /\ C <_ A ) /\ C <_ B ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 119 |
80 81 98 118
|
lecasei |
|- ( ( ( ph /\ B <_ A ) /\ C <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 120 |
64 65 79 119
|
lecasei |
|- ( ( ph /\ B <_ A ) -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |
| 121 |
11 15 63 120
|
lecasei |
|- ( ph -> S_ [ A -> C ] D _d x = ( S_ [ A -> B ] D _d x + S_ [ B -> C ] D _d x ) ) |