Metamath Proof Explorer


Theorem ditgsplit

Description: This theorem is the raison d'être for the directed integral, because unlike itgspliticc , there is no constraint on the ordering of the points A , B , C in the domain. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypotheses ditgsplit.x φX
ditgsplit.y φY
ditgsplit.a φAXY
ditgsplit.b φBXY
ditgsplit.c φCXY
ditgsplit.d φxXYDV
ditgsplit.i φxXYD𝐿1
Assertion ditgsplit φACDdx=ABDdx+BCDdx

Proof

Step Hyp Ref Expression
1 ditgsplit.x φX
2 ditgsplit.y φY
3 ditgsplit.a φAXY
4 ditgsplit.b φBXY
5 ditgsplit.c φCXY
6 ditgsplit.d φxXYDV
7 ditgsplit.i φxXYD𝐿1
8 elicc2 XYAXYAXAAY
9 1 2 8 syl2anc φAXYAXAAY
10 3 9 mpbid φAXAAY
11 10 simp1d φA
12 elicc2 XYBXYBXBBY
13 1 2 12 syl2anc φBXYBXBBY
14 4 13 mpbid φBXBBY
15 14 simp1d φB
16 11 adantr φABA
17 elicc2 XYCXYCXCCY
18 1 2 17 syl2anc φCXYCXCCY
19 5 18 mpbid φCXCCY
20 19 simp1d φC
21 20 adantr φABC
22 15 ad2antrr φABACB
23 20 ad2antrr φABACC
24 biid ABBCABBC
25 1 2 3 4 5 6 7 24 ditgsplitlem φABBCACDdx=ABDdx+BCDdx
26 25 adantlr φABACBCACDdx=ABDdx+BCDdx
27 biid ACCBACCB
28 1 2 3 5 4 6 7 27 ditgsplitlem φACCBABDdx=ACDdx+CBDdx
29 28 oveq1d φACCBABDdx+BCDdx=ACDdx+CBDdx+BCDdx
30 1 2 3 5 6 7 ditgcl φACDdx
31 1 2 5 4 6 7 ditgcl φCBDdx
32 1 2 4 5 6 7 ditgcl φBCDdx
33 30 31 32 addassd φACDdx+CBDdx+BCDdx=ACDdx+CBDdx+BCDdx
34 1 2 5 4 6 7 ditgswap φBCDdx=CBDdx
35 34 oveq2d φCBDdx+BCDdx=CBDdx+CBDdx
36 31 negidd φCBDdx+CBDdx=0
37 35 36 eqtrd φCBDdx+BCDdx=0
38 37 oveq2d φACDdx+CBDdx+BCDdx=ACDdx+0
39 30 addridd φACDdx+0=ACDdx
40 33 38 39 3eqtrd φACDdx+CBDdx+BCDdx=ACDdx
41 40 ad2antrr φACCBACDdx+CBDdx+BCDdx=ACDdx
42 29 41 eqtr2d φACCBACDdx=ABDdx+BCDdx
43 42 adantllr φABACCBACDdx=ABDdx+BCDdx
44 22 23 26 43 lecasei φABACACDdx=ABDdx+BCDdx
45 40 ad2antrr φABCAACDdx+CBDdx+BCDdx=ACDdx
46 ancom ABCACAAB
47 1 2 5 3 4 6 7 46 ditgsplitlem φABCACBDdx=CADdx+ABDdx
48 47 oveq2d φABCAACDdx+CBDdx=ACDdx+CADdx+ABDdx
49 1 2 3 5 6 7 ditgswap φCADdx=ACDdx
50 49 oveq2d φACDdx+CADdx=ACDdx+ACDdx
51 30 negidd φACDdx+ACDdx=0
52 50 51 eqtrd φACDdx+CADdx=0
53 52 oveq1d φACDdx+CADdx+ABDdx=0+ABDdx
54 1 2 5 3 6 7 ditgcl φCADdx
55 1 2 3 4 6 7 ditgcl φABDdx
56 30 54 55 addassd φACDdx+CADdx+ABDdx=ACDdx+CADdx+ABDdx
57 55 addlidd φ0+ABDdx=ABDdx
58 53 56 57 3eqtr3d φACDdx+CADdx+ABDdx=ABDdx
59 58 ad2antrr φABCAACDdx+CADdx+ABDdx=ABDdx
60 48 59 eqtrd φABCAACDdx+CBDdx=ABDdx
61 60 oveq1d φABCAACDdx+CBDdx+BCDdx=ABDdx+BCDdx
62 45 61 eqtr3d φABCAACDdx=ABDdx+BCDdx
63 16 21 44 62 lecasei φABACDdx=ABDdx+BCDdx
64 11 adantr φBAA
65 20 adantr φBAC
66 biid BAACBAAC
67 1 2 4 3 5 6 7 66 ditgsplitlem φBAACBCDdx=BADdx+ACDdx
68 67 oveq2d φBAACABDdx+BCDdx=ABDdx+BADdx+ACDdx
69 1 2 3 4 6 7 ditgswap φBADdx=ABDdx
70 69 oveq2d φABDdx+BADdx=ABDdx+ABDdx
71 55 negidd φABDdx+ABDdx=0
72 70 71 eqtrd φABDdx+BADdx=0
73 72 oveq1d φABDdx+BADdx+ACDdx=0+ACDdx
74 1 2 4 3 6 7 ditgcl φBADdx
75 55 74 30 addassd φABDdx+BADdx+ACDdx=ABDdx+BADdx+ACDdx
76 30 addlidd φ0+ACDdx=ACDdx
77 73 75 76 3eqtr3d φABDdx+BADdx+ACDdx=ACDdx
78 77 ad2antrr φBAACABDdx+BADdx+ACDdx=ACDdx
79 68 78 eqtr2d φBAACACDdx=ABDdx+BCDdx
80 15 ad2antrr φBACAB
81 20 ad2antrr φBACAC
82 ancom CABCBCCA
83 1 2 4 5 3 6 7 82 ditgsplitlem φCABCBADdx=BCDdx+CADdx
84 83 oveq1d φCABCBADdx+ACDdx=BCDdx+CADdx+ACDdx
85 32 54 30 addassd φBCDdx+CADdx+ACDdx=BCDdx+CADdx+ACDdx
86 1 2 5 3 6 7 ditgswap φACDdx=CADdx
87 86 oveq2d φCADdx+ACDdx=CADdx+CADdx
88 54 negidd φCADdx+CADdx=0
89 87 88 eqtrd φCADdx+ACDdx=0
90 89 oveq2d φBCDdx+CADdx+ACDdx=BCDdx+0
91 32 addridd φBCDdx+0=BCDdx
92 85 90 91 3eqtrd φBCDdx+CADdx+ACDdx=BCDdx
93 92 ad2antrr φCABCBCDdx+CADdx+ACDdx=BCDdx
94 84 93 eqtr2d φCABCBCDdx=BADdx+ACDdx
95 94 oveq2d φCABCABDdx+BCDdx=ABDdx+BADdx+ACDdx
96 77 ad2antrr φCABCABDdx+BADdx+ACDdx=ACDdx
97 95 96 eqtr2d φCABCACDdx=ABDdx+BCDdx
98 97 adantllr φBACABCACDdx=ABDdx+BCDdx
99 ancom BACBCBBA
100 1 2 5 4 3 6 7 99 ditgsplitlem φBACBCADdx=CBDdx+BADdx
101 100 oveq1d φBACBCADdx+ABDdx=CBDdx+BADdx+ABDdx
102 31 74 55 addassd φCBDdx+BADdx+ABDdx=CBDdx+BADdx+ABDdx
103 1 2 4 3 6 7 ditgswap φABDdx=BADdx
104 103 oveq2d φBADdx+ABDdx=BADdx+BADdx
105 74 negidd φBADdx+BADdx=0
106 104 105 eqtrd φBADdx+ABDdx=0
107 106 oveq2d φCBDdx+BADdx+ABDdx=CBDdx+0
108 31 addridd φCBDdx+0=CBDdx
109 102 107 108 3eqtrd φCBDdx+BADdx+ABDdx=CBDdx
110 109 ad2antrr φBACBCBDdx+BADdx+ABDdx=CBDdx
111 101 110 eqtr2d φBACBCBDdx=CADdx+ABDdx
112 111 oveq2d φBACBACDdx+CBDdx=ACDdx+CADdx+ABDdx
113 58 ad2antrr φBACBACDdx+CADdx+ABDdx=ABDdx
114 112 113 eqtr2d φBACBABDdx=ACDdx+CBDdx
115 114 oveq1d φBACBABDdx+BCDdx=ACDdx+CBDdx+BCDdx
116 40 ad2antrr φBACBACDdx+CBDdx+BCDdx=ACDdx
117 115 116 eqtr2d φBACBACDdx=ABDdx+BCDdx
118 117 adantlr φBACACBACDdx=ABDdx+BCDdx
119 80 81 98 118 lecasei φBACAACDdx=ABDdx+BCDdx
120 64 65 79 119 lecasei φBAACDdx=ABDdx+BCDdx
121 11 15 63 120 lecasei φACDdx=ABDdx+BCDdx