| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpup.b |  |-  B = ( Base ` H ) | 
						
							| 2 |  | frgpup.n |  |-  N = ( invg ` H ) | 
						
							| 3 |  | frgpup.t |  |-  T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) | 
						
							| 4 |  | frgpup.h |  |-  ( ph -> H e. Grp ) | 
						
							| 5 |  | frgpup.i |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | frgpup.a |  |-  ( ph -> F : I --> B ) | 
						
							| 7 |  | frgpup.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 8 |  | frgpup.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 9 |  | frgpup.g |  |-  G = ( freeGrp ` I ) | 
						
							| 10 |  | frgpup.x |  |-  X = ( Base ` G ) | 
						
							| 11 |  | frgpup.e |  |-  E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) | 
						
							| 12 |  | frgpup.u |  |-  U = ( varFGrp ` I ) | 
						
							| 13 |  | frgpup.y |  |-  ( ph -> A e. I ) | 
						
							| 14 | 8 12 | vrgpval |  |-  ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) | 
						
							| 15 | 5 13 14 | syl2anc |  |-  ( ph -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ph -> ( E ` ( U ` A ) ) = ( E ` [ <" <. A , (/) >. "> ] .~ ) ) | 
						
							| 17 |  | 0ex |  |-  (/) e. _V | 
						
							| 18 | 17 | prid1 |  |-  (/) e. { (/) , 1o } | 
						
							| 19 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 20 | 18 19 | eleqtrri |  |-  (/) e. 2o | 
						
							| 21 |  | opelxpi |  |-  ( ( A e. I /\ (/) e. 2o ) -> <. A , (/) >. e. ( I X. 2o ) ) | 
						
							| 22 | 13 20 21 | sylancl |  |-  ( ph -> <. A , (/) >. e. ( I X. 2o ) ) | 
						
							| 23 | 22 | s1cld |  |-  ( ph -> <" <. A , (/) >. "> e. Word ( I X. 2o ) ) | 
						
							| 24 |  | 2on |  |-  2o e. On | 
						
							| 25 |  | xpexg |  |-  ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) | 
						
							| 26 | 5 24 25 | sylancl |  |-  ( ph -> ( I X. 2o ) e. _V ) | 
						
							| 27 |  | wrdexg |  |-  ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) | 
						
							| 28 |  | fvi |  |-  ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 29 | 26 27 28 | 3syl |  |-  ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) | 
						
							| 30 | 7 29 | eqtrid |  |-  ( ph -> W = Word ( I X. 2o ) ) | 
						
							| 31 | 23 30 | eleqtrrd |  |-  ( ph -> <" <. A , (/) >. "> e. W ) | 
						
							| 32 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval |  |-  ( ( ph /\ <" <. A , (/) >. "> e. W ) -> ( E ` [ <" <. A , (/) >. "> ] .~ ) = ( H gsum ( T o. <" <. A , (/) >. "> ) ) ) | 
						
							| 33 | 31 32 | mpdan |  |-  ( ph -> ( E ` [ <" <. A , (/) >. "> ] .~ ) = ( H gsum ( T o. <" <. A , (/) >. "> ) ) ) | 
						
							| 34 | 1 2 3 4 5 6 | frgpuptf |  |-  ( ph -> T : ( I X. 2o ) --> B ) | 
						
							| 35 |  | s1co |  |-  ( ( <. A , (/) >. e. ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. <" <. A , (/) >. "> ) = <" ( T ` <. A , (/) >. ) "> ) | 
						
							| 36 | 22 34 35 | syl2anc |  |-  ( ph -> ( T o. <" <. A , (/) >. "> ) = <" ( T ` <. A , (/) >. ) "> ) | 
						
							| 37 |  | df-ov |  |-  ( A T (/) ) = ( T ` <. A , (/) >. ) | 
						
							| 38 |  | iftrue |  |-  ( z = (/) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` y ) ) | 
						
							| 39 |  | fveq2 |  |-  ( y = A -> ( F ` y ) = ( F ` A ) ) | 
						
							| 40 | 38 39 | sylan9eqr |  |-  ( ( y = A /\ z = (/) ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` A ) ) | 
						
							| 41 |  | fvex |  |-  ( F ` A ) e. _V | 
						
							| 42 | 40 3 41 | ovmpoa |  |-  ( ( A e. I /\ (/) e. 2o ) -> ( A T (/) ) = ( F ` A ) ) | 
						
							| 43 | 13 20 42 | sylancl |  |-  ( ph -> ( A T (/) ) = ( F ` A ) ) | 
						
							| 44 | 37 43 | eqtr3id |  |-  ( ph -> ( T ` <. A , (/) >. ) = ( F ` A ) ) | 
						
							| 45 | 44 | s1eqd |  |-  ( ph -> <" ( T ` <. A , (/) >. ) "> = <" ( F ` A ) "> ) | 
						
							| 46 | 36 45 | eqtrd |  |-  ( ph -> ( T o. <" <. A , (/) >. "> ) = <" ( F ` A ) "> ) | 
						
							| 47 | 46 | oveq2d |  |-  ( ph -> ( H gsum ( T o. <" <. A , (/) >. "> ) ) = ( H gsum <" ( F ` A ) "> ) ) | 
						
							| 48 | 6 13 | ffvelcdmd |  |-  ( ph -> ( F ` A ) e. B ) | 
						
							| 49 | 1 | gsumws1 |  |-  ( ( F ` A ) e. B -> ( H gsum <" ( F ` A ) "> ) = ( F ` A ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> ( H gsum <" ( F ` A ) "> ) = ( F ` A ) ) | 
						
							| 51 | 47 50 | eqtrd |  |-  ( ph -> ( H gsum ( T o. <" <. A , (/) >. "> ) ) = ( F ` A ) ) | 
						
							| 52 | 16 33 51 | 3eqtrd |  |-  ( ph -> ( E ` ( U ` A ) ) = ( F ` A ) ) |