Step |
Hyp |
Ref |
Expression |
1 |
|
fta1b.p |
|- P = ( Poly1 ` R ) |
2 |
|
fta1b.b |
|- B = ( Base ` P ) |
3 |
|
fta1b.d |
|- D = ( deg1 ` R ) |
4 |
|
fta1b.o |
|- O = ( eval1 ` R ) |
5 |
|
fta1b.w |
|- W = ( 0g ` R ) |
6 |
|
fta1b.z |
|- .0. = ( 0g ` P ) |
7 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
8 |
7
|
simplbi |
|- ( R e. IDomn -> R e. CRing ) |
9 |
7
|
simprbi |
|- ( R e. IDomn -> R e. Domn ) |
10 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
11 |
9 10
|
syl |
|- ( R e. IDomn -> R e. NzRing ) |
12 |
|
simpl |
|- ( ( R e. IDomn /\ f e. ( B \ { .0. } ) ) -> R e. IDomn ) |
13 |
|
eldifsn |
|- ( f e. ( B \ { .0. } ) <-> ( f e. B /\ f =/= .0. ) ) |
14 |
13
|
simplbi |
|- ( f e. ( B \ { .0. } ) -> f e. B ) |
15 |
14
|
adantl |
|- ( ( R e. IDomn /\ f e. ( B \ { .0. } ) ) -> f e. B ) |
16 |
13
|
simprbi |
|- ( f e. ( B \ { .0. } ) -> f =/= .0. ) |
17 |
16
|
adantl |
|- ( ( R e. IDomn /\ f e. ( B \ { .0. } ) ) -> f =/= .0. ) |
18 |
1 2 3 4 5 6 12 15 17
|
fta1g |
|- ( ( R e. IDomn /\ f e. ( B \ { .0. } ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) |
19 |
18
|
ralrimiva |
|- ( R e. IDomn -> A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) |
20 |
8 11 19
|
3jca |
|- ( R e. IDomn -> ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) |
21 |
|
simp1 |
|- ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) -> R e. CRing ) |
22 |
|
simp2 |
|- ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) -> R e. NzRing ) |
23 |
|
df-ne |
|- ( x =/= W <-> -. x = W ) |
24 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
25 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
26 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
27 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
28 |
|
simpll1 |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( ( x ( .r ` R ) y ) = W /\ x =/= W ) ) -> R e. CRing ) |
29 |
|
simplrl |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( ( x ( .r ` R ) y ) = W /\ x =/= W ) ) -> x e. ( Base ` R ) ) |
30 |
|
simplrr |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( ( x ( .r ` R ) y ) = W /\ x =/= W ) ) -> y e. ( Base ` R ) ) |
31 |
|
simprl |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( ( x ( .r ` R ) y ) = W /\ x =/= W ) ) -> ( x ( .r ` R ) y ) = W ) |
32 |
|
simprr |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( ( x ( .r ` R ) y ) = W /\ x =/= W ) ) -> x =/= W ) |
33 |
|
simpll3 |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( ( x ( .r ` R ) y ) = W /\ x =/= W ) ) -> A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) |
34 |
|
fveq2 |
|- ( f = ( x ( .s ` P ) ( var1 ` R ) ) -> ( O ` f ) = ( O ` ( x ( .s ` P ) ( var1 ` R ) ) ) ) |
35 |
34
|
cnveqd |
|- ( f = ( x ( .s ` P ) ( var1 ` R ) ) -> `' ( O ` f ) = `' ( O ` ( x ( .s ` P ) ( var1 ` R ) ) ) ) |
36 |
35
|
imaeq1d |
|- ( f = ( x ( .s ` P ) ( var1 ` R ) ) -> ( `' ( O ` f ) " { W } ) = ( `' ( O ` ( x ( .s ` P ) ( var1 ` R ) ) ) " { W } ) ) |
37 |
36
|
fveq2d |
|- ( f = ( x ( .s ` P ) ( var1 ` R ) ) -> ( # ` ( `' ( O ` f ) " { W } ) ) = ( # ` ( `' ( O ` ( x ( .s ` P ) ( var1 ` R ) ) ) " { W } ) ) ) |
38 |
|
fveq2 |
|- ( f = ( x ( .s ` P ) ( var1 ` R ) ) -> ( D ` f ) = ( D ` ( x ( .s ` P ) ( var1 ` R ) ) ) ) |
39 |
37 38
|
breq12d |
|- ( f = ( x ( .s ` P ) ( var1 ` R ) ) -> ( ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) <-> ( # ` ( `' ( O ` ( x ( .s ` P ) ( var1 ` R ) ) ) " { W } ) ) <_ ( D ` ( x ( .s ` P ) ( var1 ` R ) ) ) ) ) |
40 |
39
|
rspccv |
|- ( A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) -> ( ( x ( .s ` P ) ( var1 ` R ) ) e. ( B \ { .0. } ) -> ( # ` ( `' ( O ` ( x ( .s ` P ) ( var1 ` R ) ) ) " { W } ) ) <_ ( D ` ( x ( .s ` P ) ( var1 ` R ) ) ) ) ) |
41 |
33 40
|
syl |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( ( x ( .r ` R ) y ) = W /\ x =/= W ) ) -> ( ( x ( .s ` P ) ( var1 ` R ) ) e. ( B \ { .0. } ) -> ( # ` ( `' ( O ` ( x ( .s ` P ) ( var1 ` R ) ) ) " { W } ) ) <_ ( D ` ( x ( .s ` P ) ( var1 ` R ) ) ) ) ) |
42 |
1 2 3 4 5 6 24 25 26 27 28 29 30 31 32 41
|
fta1blem |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( ( x ( .r ` R ) y ) = W /\ x =/= W ) ) -> y = W ) |
43 |
42
|
expr |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( x ( .r ` R ) y ) = W ) -> ( x =/= W -> y = W ) ) |
44 |
23 43
|
syl5bir |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( x ( .r ` R ) y ) = W ) -> ( -. x = W -> y = W ) ) |
45 |
44
|
orrd |
|- ( ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) /\ ( x ( .r ` R ) y ) = W ) -> ( x = W \/ y = W ) ) |
46 |
45
|
ex |
|- ( ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( .r ` R ) y ) = W -> ( x = W \/ y = W ) ) ) |
47 |
46
|
ralrimivva |
|- ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = W -> ( x = W \/ y = W ) ) ) |
48 |
24 25 5
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = W -> ( x = W \/ y = W ) ) ) ) |
49 |
22 47 48
|
sylanbrc |
|- ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) -> R e. Domn ) |
50 |
21 49 7
|
sylanbrc |
|- ( ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) -> R e. IDomn ) |
51 |
20 50
|
impbii |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. NzRing /\ A. f e. ( B \ { .0. } ) ( # ` ( `' ( O ` f ) " { W } ) ) <_ ( D ` f ) ) ) |