Description: The assumption that R be a domain in fta1g is necessary. Here we show that the statement is strong enough to prove that R is a domain. (Contributed by Mario Carneiro, 12-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fta1b.p | |
|
fta1b.b | |
||
fta1b.d | |
||
fta1b.o | |
||
fta1b.w | |
||
fta1b.z | |
||
Assertion | fta1b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fta1b.p | |
|
2 | fta1b.b | |
|
3 | fta1b.d | |
|
4 | fta1b.o | |
|
5 | fta1b.w | |
|
6 | fta1b.z | |
|
7 | isidom | |
|
8 | 7 | simplbi | |
9 | 7 | simprbi | |
10 | domnnzr | |
|
11 | 9 10 | syl | |
12 | simpl | |
|
13 | eldifsn | |
|
14 | 13 | simplbi | |
15 | 14 | adantl | |
16 | 13 | simprbi | |
17 | 16 | adantl | |
18 | 1 2 3 4 5 6 12 15 17 | fta1g | |
19 | 18 | ralrimiva | |
20 | 8 11 19 | 3jca | |
21 | simp1 | |
|
22 | simp2 | |
|
23 | df-ne | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | simpll1 | |
|
29 | simplrl | |
|
30 | simplrr | |
|
31 | simprl | |
|
32 | simprr | |
|
33 | simpll3 | |
|
34 | fveq2 | |
|
35 | 34 | cnveqd | |
36 | 35 | imaeq1d | |
37 | 36 | fveq2d | |
38 | fveq2 | |
|
39 | 37 38 | breq12d | |
40 | 39 | rspccv | |
41 | 33 40 | syl | |
42 | 1 2 3 4 5 6 24 25 26 27 28 29 30 31 32 41 | fta1blem | |
43 | 42 | expr | |
44 | 23 43 | biimtrrid | |
45 | 44 | orrd | |
46 | 45 | ex | |
47 | 46 | ralrimivva | |
48 | 24 25 5 | isdomn | |
49 | 22 47 48 | sylanbrc | |
50 | 21 49 7 | sylanbrc | |
51 | 20 50 | impbii | |