Metamath Proof Explorer


Theorem fta1b

Description: The assumption that R be a domain in fta1g is necessary. Here we show that the statement is strong enough to prove that R is a domain. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses fta1b.p P=Poly1R
fta1b.b B=BaseP
fta1b.d D=deg1R
fta1b.o O=eval1R
fta1b.w W=0R
fta1b.z 0˙=0P
Assertion fta1b RIDomnRCRingRNzRingfB0˙Of-1WDf

Proof

Step Hyp Ref Expression
1 fta1b.p P=Poly1R
2 fta1b.b B=BaseP
3 fta1b.d D=deg1R
4 fta1b.o O=eval1R
5 fta1b.w W=0R
6 fta1b.z 0˙=0P
7 isidom RIDomnRCRingRDomn
8 7 simplbi RIDomnRCRing
9 7 simprbi RIDomnRDomn
10 domnnzr RDomnRNzRing
11 9 10 syl RIDomnRNzRing
12 simpl RIDomnfB0˙RIDomn
13 eldifsn fB0˙fBf0˙
14 13 simplbi fB0˙fB
15 14 adantl RIDomnfB0˙fB
16 13 simprbi fB0˙f0˙
17 16 adantl RIDomnfB0˙f0˙
18 1 2 3 4 5 6 12 15 17 fta1g RIDomnfB0˙Of-1WDf
19 18 ralrimiva RIDomnfB0˙Of-1WDf
20 8 11 19 3jca RIDomnRCRingRNzRingfB0˙Of-1WDf
21 simp1 RCRingRNzRingfB0˙Of-1WDfRCRing
22 simp2 RCRingRNzRingfB0˙Of-1WDfRNzRing
23 df-ne xW¬x=W
24 eqid BaseR=BaseR
25 eqid R=R
26 eqid var1R=var1R
27 eqid P=P
28 simpll1 RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWRCRing
29 simplrl RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWxBaseR
30 simplrr RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWyBaseR
31 simprl RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWxRy=W
32 simprr RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWxW
33 simpll3 RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWfB0˙Of-1WDf
34 fveq2 f=xPvar1ROf=OxPvar1R
35 34 cnveqd f=xPvar1ROf-1=OxPvar1R-1
36 35 imaeq1d f=xPvar1ROf-1W=OxPvar1R-1W
37 36 fveq2d f=xPvar1ROf-1W=OxPvar1R-1W
38 fveq2 f=xPvar1RDf=DxPvar1R
39 37 38 breq12d f=xPvar1ROf-1WDfOxPvar1R-1WDxPvar1R
40 39 rspccv fB0˙Of-1WDfxPvar1RB0˙OxPvar1R-1WDxPvar1R
41 33 40 syl RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWxPvar1RB0˙OxPvar1R-1WDxPvar1R
42 1 2 3 4 5 6 24 25 26 27 28 29 30 31 32 41 fta1blem RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWy=W
43 42 expr RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=WxWy=W
44 23 43 biimtrrid RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=W¬x=Wy=W
45 44 orrd RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=Wx=Wy=W
46 45 ex RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=Wx=Wy=W
47 46 ralrimivva RCRingRNzRingfB0˙Of-1WDfxBaseRyBaseRxRy=Wx=Wy=W
48 24 25 5 isdomn RDomnRNzRingxBaseRyBaseRxRy=Wx=Wy=W
49 22 47 48 sylanbrc RCRingRNzRingfB0˙Of-1WDfRDomn
50 21 49 7 sylanbrc RCRingRNzRingfB0˙Of-1WDfRIDomn
51 20 50 impbii RIDomnRCRingRNzRingfB0˙Of-1WDf