Step |
Hyp |
Ref |
Expression |
1 |
|
irrdifflemf.a |
|- ( ph -> A e. RR ) |
2 |
|
irrdifflemf.irr |
|- ( ph -> -. A e. QQ ) |
3 |
|
irrdifflemf.q |
|- ( ph -> Q e. QQ ) |
4 |
|
irrdifflemf.r |
|- ( ph -> R e. QQ ) |
5 |
|
irrdifflemf.qr |
|- ( ph -> Q =/= R ) |
6 |
|
simplll |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ph ) |
7 |
|
simpllr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
8 |
|
simplr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( A - Q ) ) |
9 |
|
simpr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - R ) ) = ( A - R ) ) |
10 |
7 8 9
|
3eqtr3d |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - Q ) = ( A - R ) ) |
11 |
1
|
recnd |
|- ( ph -> A e. CC ) |
12 |
11
|
adantr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> A e. CC ) |
13 |
|
qre |
|- ( Q e. QQ -> Q e. RR ) |
14 |
3 13
|
syl |
|- ( ph -> Q e. RR ) |
15 |
14
|
recnd |
|- ( ph -> Q e. CC ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> Q e. CC ) |
17 |
|
qre |
|- ( R e. QQ -> R e. RR ) |
18 |
4 17
|
syl |
|- ( ph -> R e. RR ) |
19 |
18
|
recnd |
|- ( ph -> R e. CC ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> R e. CC ) |
21 |
|
simpr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> ( A - Q ) = ( A - R ) ) |
22 |
12 16 20 21
|
subcand |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> Q = R ) |
23 |
5
|
adantr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> Q =/= R ) |
24 |
22 23
|
pm2.21ddne |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> F. ) |
25 |
6 10 24
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> F. ) |
26 |
|
simplll |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ph ) |
27 |
|
simpllr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
28 |
|
simplr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( A - Q ) ) |
29 |
|
simpr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - R ) ) = -u ( A - R ) ) |
30 |
27 28 29
|
3eqtr3d |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( A - Q ) = -u ( A - R ) ) |
31 |
|
2cnd |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> 2 e. CC ) |
32 |
11
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> A e. CC ) |
33 |
|
2ne0 |
|- 2 =/= 0 |
34 |
33
|
a1i |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> 2 =/= 0 ) |
35 |
32
|
2timesd |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( 2 x. A ) = ( A + A ) ) |
36 |
|
simpr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( A - Q ) = -u ( A - R ) ) |
37 |
19
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> R e. CC ) |
38 |
32 37
|
negsubdi2d |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> -u ( A - R ) = ( R - A ) ) |
39 |
36 38
|
eqtrd |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( A - Q ) = ( R - A ) ) |
40 |
15
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> Q e. CC ) |
41 |
40 37 32 32
|
addsubeq4d |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( ( Q + R ) = ( A + A ) <-> ( A - Q ) = ( R - A ) ) ) |
42 |
39 41
|
mpbird |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( Q + R ) = ( A + A ) ) |
43 |
35 42
|
eqtr4d |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( 2 x. A ) = ( Q + R ) ) |
44 |
31 32 34 43
|
mvllmuld |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> A = ( ( Q + R ) / 2 ) ) |
45 |
3
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> Q e. QQ ) |
46 |
4
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> R e. QQ ) |
47 |
|
qaddcl |
|- ( ( Q e. QQ /\ R e. QQ ) -> ( Q + R ) e. QQ ) |
48 |
45 46 47
|
syl2anc |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( Q + R ) e. QQ ) |
49 |
|
2z |
|- 2 e. ZZ |
50 |
|
zq |
|- ( 2 e. ZZ -> 2 e. QQ ) |
51 |
49 50
|
mp1i |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> 2 e. QQ ) |
52 |
|
qdivcl |
|- ( ( ( Q + R ) e. QQ /\ 2 e. QQ /\ 2 =/= 0 ) -> ( ( Q + R ) / 2 ) e. QQ ) |
53 |
48 51 34 52
|
syl3anc |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( ( Q + R ) / 2 ) e. QQ ) |
54 |
44 53
|
eqeltrd |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> A e. QQ ) |
55 |
2
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> -. A e. QQ ) |
56 |
54 55
|
pm2.21fal |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> F. ) |
57 |
26 30 56
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> F. ) |
58 |
1 18
|
resubcld |
|- ( ph -> ( A - R ) e. RR ) |
59 |
58
|
absord |
|- ( ph -> ( ( abs ` ( A - R ) ) = ( A - R ) \/ ( abs ` ( A - R ) ) = -u ( A - R ) ) ) |
60 |
59
|
ad2antrr |
|- ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) -> ( ( abs ` ( A - R ) ) = ( A - R ) \/ ( abs ` ( A - R ) ) = -u ( A - R ) ) ) |
61 |
25 57 60
|
mpjaodan |
|- ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) -> F. ) |
62 |
|
simplll |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ph ) |
63 |
|
simpllr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
64 |
|
simplr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - Q ) ) = -u ( A - Q ) ) |
65 |
|
simpr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - R ) ) = ( A - R ) ) |
66 |
63 64 65
|
3eqtr3rd |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - R ) = -u ( A - Q ) ) |
67 |
58
|
recnd |
|- ( ph -> ( A - R ) e. CC ) |
68 |
67
|
ad3antrrr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - R ) e. CC ) |
69 |
1 14
|
resubcld |
|- ( ph -> ( A - Q ) e. RR ) |
70 |
69
|
recnd |
|- ( ph -> ( A - Q ) e. CC ) |
71 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - Q ) e. CC ) |
72 |
|
negcon2 |
|- ( ( ( A - R ) e. CC /\ ( A - Q ) e. CC ) -> ( ( A - R ) = -u ( A - Q ) <-> ( A - Q ) = -u ( A - R ) ) ) |
73 |
68 71 72
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( ( A - R ) = -u ( A - Q ) <-> ( A - Q ) = -u ( A - R ) ) ) |
74 |
66 73
|
mpbid |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - Q ) = -u ( A - R ) ) |
75 |
62 74 56
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> F. ) |
76 |
|
simplll |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ph ) |
77 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( A - Q ) e. CC ) |
78 |
67
|
ad3antrrr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( A - R ) e. CC ) |
79 |
|
simpllr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
80 |
|
simplr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - Q ) ) = -u ( A - Q ) ) |
81 |
|
simpr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - R ) ) = -u ( A - R ) ) |
82 |
79 80 81
|
3eqtr3d |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> -u ( A - Q ) = -u ( A - R ) ) |
83 |
77 78 82
|
neg11d |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( A - Q ) = ( A - R ) ) |
84 |
76 83 24
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> F. ) |
85 |
59
|
ad2antrr |
|- ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) -> ( ( abs ` ( A - R ) ) = ( A - R ) \/ ( abs ` ( A - R ) ) = -u ( A - R ) ) ) |
86 |
75 84 85
|
mpjaodan |
|- ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) -> F. ) |
87 |
69
|
absord |
|- ( ph -> ( ( abs ` ( A - Q ) ) = ( A - Q ) \/ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) ) |
88 |
87
|
adantr |
|- ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) -> ( ( abs ` ( A - Q ) ) = ( A - Q ) \/ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) ) |
89 |
61 86 88
|
mpjaodan |
|- ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) -> F. ) |
90 |
89
|
ex |
|- ( ph -> ( ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) -> F. ) ) |
91 |
|
df-ne |
|- ( ( abs ` ( A - Q ) ) =/= ( abs ` ( A - R ) ) <-> -. ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
92 |
|
dfnot |
|- ( -. ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) <-> ( ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) -> F. ) ) |
93 |
91 92
|
bitri |
|- ( ( abs ` ( A - Q ) ) =/= ( abs ` ( A - R ) ) <-> ( ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) -> F. ) ) |
94 |
90 93
|
sylibr |
|- ( ph -> ( abs ` ( A - Q ) ) =/= ( abs ` ( A - R ) ) ) |