| Step |
Hyp |
Ref |
Expression |
| 1 |
|
irrdifflemf.a |
|- ( ph -> A e. RR ) |
| 2 |
|
irrdifflemf.irr |
|- ( ph -> -. A e. QQ ) |
| 3 |
|
irrdifflemf.q |
|- ( ph -> Q e. QQ ) |
| 4 |
|
irrdifflemf.r |
|- ( ph -> R e. QQ ) |
| 5 |
|
irrdifflemf.qr |
|- ( ph -> Q =/= R ) |
| 6 |
|
simplll |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ph ) |
| 7 |
|
simpllr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
| 8 |
|
simplr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( A - Q ) ) |
| 9 |
|
simpr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - R ) ) = ( A - R ) ) |
| 10 |
7 8 9
|
3eqtr3d |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - Q ) = ( A - R ) ) |
| 11 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> A e. CC ) |
| 13 |
|
qre |
|- ( Q e. QQ -> Q e. RR ) |
| 14 |
3 13
|
syl |
|- ( ph -> Q e. RR ) |
| 15 |
14
|
recnd |
|- ( ph -> Q e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> Q e. CC ) |
| 17 |
|
qre |
|- ( R e. QQ -> R e. RR ) |
| 18 |
4 17
|
syl |
|- ( ph -> R e. RR ) |
| 19 |
18
|
recnd |
|- ( ph -> R e. CC ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> R e. CC ) |
| 21 |
|
simpr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> ( A - Q ) = ( A - R ) ) |
| 22 |
12 16 20 21
|
subcand |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> Q = R ) |
| 23 |
5
|
adantr |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> Q =/= R ) |
| 24 |
22 23
|
pm2.21ddne |
|- ( ( ph /\ ( A - Q ) = ( A - R ) ) -> F. ) |
| 25 |
6 10 24
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> F. ) |
| 26 |
|
simplll |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ph ) |
| 27 |
|
simpllr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
| 28 |
|
simplr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( A - Q ) ) |
| 29 |
|
simpr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - R ) ) = -u ( A - R ) ) |
| 30 |
27 28 29
|
3eqtr3d |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( A - Q ) = -u ( A - R ) ) |
| 31 |
|
2cnd |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> 2 e. CC ) |
| 32 |
11
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> A e. CC ) |
| 33 |
|
2ne0 |
|- 2 =/= 0 |
| 34 |
33
|
a1i |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> 2 =/= 0 ) |
| 35 |
32
|
2timesd |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( 2 x. A ) = ( A + A ) ) |
| 36 |
|
simpr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( A - Q ) = -u ( A - R ) ) |
| 37 |
19
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> R e. CC ) |
| 38 |
32 37
|
negsubdi2d |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> -u ( A - R ) = ( R - A ) ) |
| 39 |
36 38
|
eqtrd |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( A - Q ) = ( R - A ) ) |
| 40 |
15
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> Q e. CC ) |
| 41 |
40 37 32 32
|
addsubeq4d |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( ( Q + R ) = ( A + A ) <-> ( A - Q ) = ( R - A ) ) ) |
| 42 |
39 41
|
mpbird |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( Q + R ) = ( A + A ) ) |
| 43 |
35 42
|
eqtr4d |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( 2 x. A ) = ( Q + R ) ) |
| 44 |
31 32 34 43
|
mvllmuld |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> A = ( ( Q + R ) / 2 ) ) |
| 45 |
3
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> Q e. QQ ) |
| 46 |
4
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> R e. QQ ) |
| 47 |
|
qaddcl |
|- ( ( Q e. QQ /\ R e. QQ ) -> ( Q + R ) e. QQ ) |
| 48 |
45 46 47
|
syl2anc |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( Q + R ) e. QQ ) |
| 49 |
|
2z |
|- 2 e. ZZ |
| 50 |
|
zq |
|- ( 2 e. ZZ -> 2 e. QQ ) |
| 51 |
49 50
|
mp1i |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> 2 e. QQ ) |
| 52 |
|
qdivcl |
|- ( ( ( Q + R ) e. QQ /\ 2 e. QQ /\ 2 =/= 0 ) -> ( ( Q + R ) / 2 ) e. QQ ) |
| 53 |
48 51 34 52
|
syl3anc |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> ( ( Q + R ) / 2 ) e. QQ ) |
| 54 |
44 53
|
eqeltrd |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> A e. QQ ) |
| 55 |
2
|
adantr |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> -. A e. QQ ) |
| 56 |
54 55
|
pm2.21fal |
|- ( ( ph /\ ( A - Q ) = -u ( A - R ) ) -> F. ) |
| 57 |
26 30 56
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> F. ) |
| 58 |
1 18
|
resubcld |
|- ( ph -> ( A - R ) e. RR ) |
| 59 |
58
|
absord |
|- ( ph -> ( ( abs ` ( A - R ) ) = ( A - R ) \/ ( abs ` ( A - R ) ) = -u ( A - R ) ) ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) -> ( ( abs ` ( A - R ) ) = ( A - R ) \/ ( abs ` ( A - R ) ) = -u ( A - R ) ) ) |
| 61 |
25 57 60
|
mpjaodan |
|- ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = ( A - Q ) ) -> F. ) |
| 62 |
|
simplll |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ph ) |
| 63 |
|
simpllr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
| 64 |
|
simplr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - Q ) ) = -u ( A - Q ) ) |
| 65 |
|
simpr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( abs ` ( A - R ) ) = ( A - R ) ) |
| 66 |
63 64 65
|
3eqtr3rd |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - R ) = -u ( A - Q ) ) |
| 67 |
58
|
recnd |
|- ( ph -> ( A - R ) e. CC ) |
| 68 |
67
|
ad3antrrr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - R ) e. CC ) |
| 69 |
1 14
|
resubcld |
|- ( ph -> ( A - Q ) e. RR ) |
| 70 |
69
|
recnd |
|- ( ph -> ( A - Q ) e. CC ) |
| 71 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - Q ) e. CC ) |
| 72 |
|
negcon2 |
|- ( ( ( A - R ) e. CC /\ ( A - Q ) e. CC ) -> ( ( A - R ) = -u ( A - Q ) <-> ( A - Q ) = -u ( A - R ) ) ) |
| 73 |
68 71 72
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( ( A - R ) = -u ( A - Q ) <-> ( A - Q ) = -u ( A - R ) ) ) |
| 74 |
66 73
|
mpbid |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> ( A - Q ) = -u ( A - R ) ) |
| 75 |
62 74 56
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = ( A - R ) ) -> F. ) |
| 76 |
|
simplll |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ph ) |
| 77 |
70
|
ad3antrrr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( A - Q ) e. CC ) |
| 78 |
67
|
ad3antrrr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( A - R ) e. CC ) |
| 79 |
|
simpllr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
| 80 |
|
simplr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - Q ) ) = -u ( A - Q ) ) |
| 81 |
|
simpr |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( abs ` ( A - R ) ) = -u ( A - R ) ) |
| 82 |
79 80 81
|
3eqtr3d |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> -u ( A - Q ) = -u ( A - R ) ) |
| 83 |
77 78 82
|
neg11d |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> ( A - Q ) = ( A - R ) ) |
| 84 |
76 83 24
|
syl2anc |
|- ( ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) /\ ( abs ` ( A - R ) ) = -u ( A - R ) ) -> F. ) |
| 85 |
59
|
ad2antrr |
|- ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) -> ( ( abs ` ( A - R ) ) = ( A - R ) \/ ( abs ` ( A - R ) ) = -u ( A - R ) ) ) |
| 86 |
75 84 85
|
mpjaodan |
|- ( ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) /\ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) -> F. ) |
| 87 |
69
|
absord |
|- ( ph -> ( ( abs ` ( A - Q ) ) = ( A - Q ) \/ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) ) |
| 88 |
87
|
adantr |
|- ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) -> ( ( abs ` ( A - Q ) ) = ( A - Q ) \/ ( abs ` ( A - Q ) ) = -u ( A - Q ) ) ) |
| 89 |
61 86 88
|
mpjaodan |
|- ( ( ph /\ ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) -> F. ) |
| 90 |
89
|
ex |
|- ( ph -> ( ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) -> F. ) ) |
| 91 |
|
df-ne |
|- ( ( abs ` ( A - Q ) ) =/= ( abs ` ( A - R ) ) <-> -. ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) ) |
| 92 |
|
dfnot |
|- ( -. ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) <-> ( ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) -> F. ) ) |
| 93 |
91 92
|
bitri |
|- ( ( abs ` ( A - Q ) ) =/= ( abs ` ( A - R ) ) <-> ( ( abs ` ( A - Q ) ) = ( abs ` ( A - R ) ) -> F. ) ) |
| 94 |
90 93
|
sylibr |
|- ( ph -> ( abs ` ( A - Q ) ) =/= ( abs ` ( A - R ) ) ) |