Step |
Hyp |
Ref |
Expression |
1 |
|
simplll |
|- ( ( ( ( A e. RR /\ -. A e. QQ ) /\ ( q e. QQ /\ r e. QQ ) ) /\ q =/= r ) -> A e. RR ) |
2 |
|
simpllr |
|- ( ( ( ( A e. RR /\ -. A e. QQ ) /\ ( q e. QQ /\ r e. QQ ) ) /\ q =/= r ) -> -. A e. QQ ) |
3 |
|
simplrl |
|- ( ( ( ( A e. RR /\ -. A e. QQ ) /\ ( q e. QQ /\ r e. QQ ) ) /\ q =/= r ) -> q e. QQ ) |
4 |
|
simplrr |
|- ( ( ( ( A e. RR /\ -. A e. QQ ) /\ ( q e. QQ /\ r e. QQ ) ) /\ q =/= r ) -> r e. QQ ) |
5 |
|
simpr |
|- ( ( ( ( A e. RR /\ -. A e. QQ ) /\ ( q e. QQ /\ r e. QQ ) ) /\ q =/= r ) -> q =/= r ) |
6 |
1 2 3 4 5
|
irrdifflemf |
|- ( ( ( ( A e. RR /\ -. A e. QQ ) /\ ( q e. QQ /\ r e. QQ ) ) /\ q =/= r ) -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) |
7 |
6
|
ex |
|- ( ( ( A e. RR /\ -. A e. QQ ) /\ ( q e. QQ /\ r e. QQ ) ) -> ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) |
8 |
7
|
ralrimivva |
|- ( ( A e. RR /\ -. A e. QQ ) -> A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) |
9 |
|
simplr |
|- ( ( ( A e. RR /\ A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) /\ A e. QQ ) -> A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) |
10 |
|
peano2rem |
|- ( A e. RR -> ( A - 1 ) e. RR ) |
11 |
|
recn |
|- ( A e. RR -> A e. CC ) |
12 |
|
1cnd |
|- ( A e. RR -> 1 e. CC ) |
13 |
11 12
|
negsubd |
|- ( A e. RR -> ( A + -u 1 ) = ( A - 1 ) ) |
14 |
|
neg1lt0 |
|- -u 1 < 0 |
15 |
|
0lt1 |
|- 0 < 1 |
16 |
|
neg1rr |
|- -u 1 e. RR |
17 |
|
0re |
|- 0 e. RR |
18 |
|
1re |
|- 1 e. RR |
19 |
16 17 18
|
lttri |
|- ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) |
20 |
14 15 19
|
mp2an |
|- -u 1 < 1 |
21 |
16
|
a1i |
|- ( A e. RR -> -u 1 e. RR ) |
22 |
|
1red |
|- ( A e. RR -> 1 e. RR ) |
23 |
|
id |
|- ( A e. RR -> A e. RR ) |
24 |
21 22 23
|
ltadd2d |
|- ( A e. RR -> ( -u 1 < 1 <-> ( A + -u 1 ) < ( A + 1 ) ) ) |
25 |
20 24
|
mpbii |
|- ( A e. RR -> ( A + -u 1 ) < ( A + 1 ) ) |
26 |
13 25
|
eqbrtrrd |
|- ( A e. RR -> ( A - 1 ) < ( A + 1 ) ) |
27 |
10 26
|
ltned |
|- ( A e. RR -> ( A - 1 ) =/= ( A + 1 ) ) |
28 |
27
|
ad2antrr |
|- ( ( ( A e. RR /\ A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) /\ A e. QQ ) -> ( A - 1 ) =/= ( A + 1 ) ) |
29 |
|
1z |
|- 1 e. ZZ |
30 |
|
zq |
|- ( 1 e. ZZ -> 1 e. QQ ) |
31 |
29 30
|
ax-mp |
|- 1 e. QQ |
32 |
|
qsubcl |
|- ( ( A e. QQ /\ 1 e. QQ ) -> ( A - 1 ) e. QQ ) |
33 |
31 32
|
mpan2 |
|- ( A e. QQ -> ( A - 1 ) e. QQ ) |
34 |
|
qaddcl |
|- ( ( A e. QQ /\ 1 e. QQ ) -> ( A + 1 ) e. QQ ) |
35 |
31 34
|
mpan2 |
|- ( A e. QQ -> ( A + 1 ) e. QQ ) |
36 |
35
|
adantl |
|- ( ( ( A e. RR /\ A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) /\ A e. QQ ) -> ( A + 1 ) e. QQ ) |
37 |
|
simpl |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> q = ( A - 1 ) ) |
38 |
|
simpr |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> r = ( A + 1 ) ) |
39 |
37 38
|
neeq12d |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> ( q =/= r <-> ( A - 1 ) =/= ( A + 1 ) ) ) |
40 |
|
oveq2 |
|- ( q = ( A - 1 ) -> ( A - q ) = ( A - ( A - 1 ) ) ) |
41 |
40
|
adantr |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> ( A - q ) = ( A - ( A - 1 ) ) ) |
42 |
41
|
fveq2d |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> ( abs ` ( A - q ) ) = ( abs ` ( A - ( A - 1 ) ) ) ) |
43 |
|
oveq2 |
|- ( r = ( A + 1 ) -> ( A - r ) = ( A - ( A + 1 ) ) ) |
44 |
43
|
adantl |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> ( A - r ) = ( A - ( A + 1 ) ) ) |
45 |
44
|
fveq2d |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> ( abs ` ( A - r ) ) = ( abs ` ( A - ( A + 1 ) ) ) ) |
46 |
42 45
|
neeq12d |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> ( ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) <-> ( abs ` ( A - ( A - 1 ) ) ) =/= ( abs ` ( A - ( A + 1 ) ) ) ) ) |
47 |
39 46
|
imbi12d |
|- ( ( q = ( A - 1 ) /\ r = ( A + 1 ) ) -> ( ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) <-> ( ( A - 1 ) =/= ( A + 1 ) -> ( abs ` ( A - ( A - 1 ) ) ) =/= ( abs ` ( A - ( A + 1 ) ) ) ) ) ) |
48 |
47
|
rspc2gv |
|- ( ( ( A - 1 ) e. QQ /\ ( A + 1 ) e. QQ ) -> ( A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) -> ( ( A - 1 ) =/= ( A + 1 ) -> ( abs ` ( A - ( A - 1 ) ) ) =/= ( abs ` ( A - ( A + 1 ) ) ) ) ) ) |
49 |
33 36 48
|
syl2an2 |
|- ( ( ( A e. RR /\ A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) /\ A e. QQ ) -> ( A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) -> ( ( A - 1 ) =/= ( A + 1 ) -> ( abs ` ( A - ( A - 1 ) ) ) =/= ( abs ` ( A - ( A + 1 ) ) ) ) ) ) |
50 |
9 28 49
|
mp2d |
|- ( ( ( A e. RR /\ A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) /\ A e. QQ ) -> ( abs ` ( A - ( A - 1 ) ) ) =/= ( abs ` ( A - ( A + 1 ) ) ) ) |
51 |
|
neirr |
|- -. ( abs ` 1 ) =/= ( abs ` 1 ) |
52 |
11 12
|
nncand |
|- ( A e. RR -> ( A - ( A - 1 ) ) = 1 ) |
53 |
52
|
fveq2d |
|- ( A e. RR -> ( abs ` ( A - ( A - 1 ) ) ) = ( abs ` 1 ) ) |
54 |
11 12
|
subnegd |
|- ( A e. RR -> ( A - -u 1 ) = ( A + 1 ) ) |
55 |
54
|
oveq2d |
|- ( A e. RR -> ( A - ( A - -u 1 ) ) = ( A - ( A + 1 ) ) ) |
56 |
21
|
recnd |
|- ( A e. RR -> -u 1 e. CC ) |
57 |
11 56
|
nncand |
|- ( A e. RR -> ( A - ( A - -u 1 ) ) = -u 1 ) |
58 |
55 57
|
eqtr3d |
|- ( A e. RR -> ( A - ( A + 1 ) ) = -u 1 ) |
59 |
58
|
fveq2d |
|- ( A e. RR -> ( abs ` ( A - ( A + 1 ) ) ) = ( abs ` -u 1 ) ) |
60 |
12
|
absnegd |
|- ( A e. RR -> ( abs ` -u 1 ) = ( abs ` 1 ) ) |
61 |
59 60
|
eqtrd |
|- ( A e. RR -> ( abs ` ( A - ( A + 1 ) ) ) = ( abs ` 1 ) ) |
62 |
53 61
|
neeq12d |
|- ( A e. RR -> ( ( abs ` ( A - ( A - 1 ) ) ) =/= ( abs ` ( A - ( A + 1 ) ) ) <-> ( abs ` 1 ) =/= ( abs ` 1 ) ) ) |
63 |
51 62
|
mtbiri |
|- ( A e. RR -> -. ( abs ` ( A - ( A - 1 ) ) ) =/= ( abs ` ( A - ( A + 1 ) ) ) ) |
64 |
63
|
ad2antrr |
|- ( ( ( A e. RR /\ A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) /\ A e. QQ ) -> -. ( abs ` ( A - ( A - 1 ) ) ) =/= ( abs ` ( A - ( A + 1 ) ) ) ) |
65 |
50 64
|
pm2.65da |
|- ( ( A e. RR /\ A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) -> -. A e. QQ ) |
66 |
8 65
|
impbida |
|- ( A e. RR -> ( -. A e. QQ <-> A. q e. QQ A. r e. QQ ( q =/= r -> ( abs ` ( A - q ) ) =/= ( abs ` ( A - r ) ) ) ) ) |