Description: The irrationals are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 19-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | irrdiff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll | |
|
2 | simpllr | |
|
3 | simplrl | |
|
4 | simplrr | |
|
5 | simpr | |
|
6 | 1 2 3 4 5 | irrdifflemf | |
7 | 6 | ex | |
8 | 7 | ralrimivva | |
9 | simplr | |
|
10 | peano2rem | |
|
11 | recn | |
|
12 | 1cnd | |
|
13 | 11 12 | negsubd | |
14 | neg1lt0 | |
|
15 | 0lt1 | |
|
16 | neg1rr | |
|
17 | 0re | |
|
18 | 1re | |
|
19 | 16 17 18 | lttri | |
20 | 14 15 19 | mp2an | |
21 | 16 | a1i | |
22 | 1red | |
|
23 | id | |
|
24 | 21 22 23 | ltadd2d | |
25 | 20 24 | mpbii | |
26 | 13 25 | eqbrtrrd | |
27 | 10 26 | ltned | |
28 | 27 | ad2antrr | |
29 | 1z | |
|
30 | zq | |
|
31 | 29 30 | ax-mp | |
32 | qsubcl | |
|
33 | 31 32 | mpan2 | |
34 | qaddcl | |
|
35 | 31 34 | mpan2 | |
36 | 35 | adantl | |
37 | simpl | |
|
38 | simpr | |
|
39 | 37 38 | neeq12d | |
40 | oveq2 | |
|
41 | 40 | adantr | |
42 | 41 | fveq2d | |
43 | oveq2 | |
|
44 | 43 | adantl | |
45 | 44 | fveq2d | |
46 | 42 45 | neeq12d | |
47 | 39 46 | imbi12d | |
48 | 47 | rspc2gv | |
49 | 33 36 48 | syl2an2 | |
50 | 9 28 49 | mp2d | |
51 | neirr | |
|
52 | 11 12 | nncand | |
53 | 52 | fveq2d | |
54 | 11 12 | subnegd | |
55 | 54 | oveq2d | |
56 | 21 | recnd | |
57 | 11 56 | nncand | |
58 | 55 57 | eqtr3d | |
59 | 58 | fveq2d | |
60 | 12 | absnegd | |
61 | 59 60 | eqtrd | |
62 | 53 61 | neeq12d | |
63 | 51 62 | mtbiri | |
64 | 63 | ad2antrr | |
65 | 50 64 | pm2.65da | |
66 | 8 65 | impbida | |