| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplll |
|
| 2 |
|
simpllr |
|
| 3 |
|
simplrl |
|
| 4 |
|
simplrr |
|
| 5 |
|
simpr |
|
| 6 |
1 2 3 4 5
|
irrdifflemf |
|
| 7 |
6
|
ex |
|
| 8 |
7
|
ralrimivva |
|
| 9 |
|
simplr |
|
| 10 |
|
peano2rem |
|
| 11 |
|
recn |
|
| 12 |
|
1cnd |
|
| 13 |
11 12
|
negsubd |
|
| 14 |
|
neg1lt0 |
|
| 15 |
|
0lt1 |
|
| 16 |
|
neg1rr |
|
| 17 |
|
0re |
|
| 18 |
|
1re |
|
| 19 |
16 17 18
|
lttri |
|
| 20 |
14 15 19
|
mp2an |
|
| 21 |
16
|
a1i |
|
| 22 |
|
1red |
|
| 23 |
|
id |
|
| 24 |
21 22 23
|
ltadd2d |
|
| 25 |
20 24
|
mpbii |
|
| 26 |
13 25
|
eqbrtrrd |
|
| 27 |
10 26
|
ltned |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
1z |
|
| 30 |
|
zq |
|
| 31 |
29 30
|
ax-mp |
|
| 32 |
|
qsubcl |
|
| 33 |
31 32
|
mpan2 |
|
| 34 |
|
qaddcl |
|
| 35 |
31 34
|
mpan2 |
|
| 36 |
35
|
adantl |
|
| 37 |
|
simpl |
|
| 38 |
|
simpr |
|
| 39 |
37 38
|
neeq12d |
|
| 40 |
|
oveq2 |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
fveq2d |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
fveq2d |
|
| 46 |
42 45
|
neeq12d |
|
| 47 |
39 46
|
imbi12d |
|
| 48 |
47
|
rspc2gv |
|
| 49 |
33 36 48
|
syl2an2 |
|
| 50 |
9 28 49
|
mp2d |
|
| 51 |
|
neirr |
|
| 52 |
11 12
|
nncand |
|
| 53 |
52
|
fveq2d |
|
| 54 |
11 12
|
subnegd |
|
| 55 |
54
|
oveq2d |
|
| 56 |
21
|
recnd |
|
| 57 |
11 56
|
nncand |
|
| 58 |
55 57
|
eqtr3d |
|
| 59 |
58
|
fveq2d |
|
| 60 |
12
|
absnegd |
|
| 61 |
59 60
|
eqtrd |
|
| 62 |
53 61
|
neeq12d |
|
| 63 |
51 62
|
mtbiri |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
50 64
|
pm2.65da |
|
| 66 |
8 65
|
impbida |
|