Step |
Hyp |
Ref |
Expression |
1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
3 |
|
itg1add.3 |
|- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
4 |
|
itg1add.4 |
|- P = ( + |` ( ran F X. ran G ) ) |
5 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
6 |
1 5
|
syl |
|- ( ph -> ran F e. Fin ) |
7 |
|
i1frn |
|- ( G e. dom S.1 -> ran G e. Fin ) |
8 |
2 7
|
syl |
|- ( ph -> ran G e. Fin ) |
9 |
8
|
adantr |
|- ( ( ph /\ y e. ran F ) -> ran G e. Fin ) |
10 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
11 |
1 10
|
syl |
|- ( ph -> F : RR --> RR ) |
12 |
11
|
frnd |
|- ( ph -> ran F C_ RR ) |
13 |
12
|
sselda |
|- ( ( ph /\ y e. ran F ) -> y e. RR ) |
14 |
13
|
adantr |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> y e. RR ) |
15 |
14
|
recnd |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> y e. CC ) |
16 |
1 2 3
|
itg1addlem2 |
|- ( ph -> I : ( RR X. RR ) --> RR ) |
17 |
16
|
ad2antrr |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
18 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
19 |
2 18
|
syl |
|- ( ph -> G : RR --> RR ) |
20 |
19
|
frnd |
|- ( ph -> ran G C_ RR ) |
21 |
20
|
sselda |
|- ( ( ph /\ z e. ran G ) -> z e. RR ) |
22 |
21
|
adantlr |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> z e. RR ) |
23 |
17 14 22
|
fovrnd |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
24 |
23
|
recnd |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
25 |
15 24
|
mulcld |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y x. ( y I z ) ) e. CC ) |
26 |
9 25
|
fsumcl |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( y x. ( y I z ) ) e. CC ) |
27 |
22
|
recnd |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> z e. CC ) |
28 |
27 24
|
mulcld |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( z x. ( y I z ) ) e. CC ) |
29 |
9 28
|
fsumcl |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( z x. ( y I z ) ) e. CC ) |
30 |
6 26 29
|
fsumadd |
|- ( ph -> sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) = ( sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) + sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
31 |
1 2 3 4
|
itg1addlem4 |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |
32 |
15 27 24
|
adddird |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( ( y + z ) x. ( y I z ) ) = ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) ) |
33 |
32
|
sumeq2dv |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = sum_ z e. ran G ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) ) |
34 |
9 25 28
|
fsumadd |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) = ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
35 |
33 34
|
eqtrd |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
36 |
35
|
sumeq2dv |
|- ( ph -> sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
37 |
31 36
|
eqtrd |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
38 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) ) |
39 |
1 38
|
syl |
|- ( ph -> ( S.1 ` F ) = sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) ) |
40 |
19
|
adantr |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> G : RR --> RR ) |
41 |
8
|
adantr |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ran G e. Fin ) |
42 |
|
inss2 |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
43 |
42
|
a1i |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
44 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { y } ) e. dom vol ) |
45 |
1 44
|
syl |
|- ( ph -> ( `' F " { y } ) e. dom vol ) |
46 |
45
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( `' F " { y } ) e. dom vol ) |
47 |
|
i1fima |
|- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
48 |
2 47
|
syl |
|- ( ph -> ( `' G " { z } ) e. dom vol ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( `' G " { z } ) e. dom vol ) |
50 |
|
inmbl |
|- ( ( ( `' F " { y } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
51 |
46 49 50
|
syl2anc |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
52 |
12
|
ssdifssd |
|- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
53 |
52
|
sselda |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> y e. RR ) |
54 |
53
|
adantr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y e. RR ) |
55 |
20
|
adantr |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ran G C_ RR ) |
56 |
55
|
sselda |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) |
57 |
|
eldifsni |
|- ( y e. ( ran F \ { 0 } ) -> y =/= 0 ) |
58 |
57
|
ad2antlr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y =/= 0 ) |
59 |
|
simpl |
|- ( ( y = 0 /\ z = 0 ) -> y = 0 ) |
60 |
59
|
necon3ai |
|- ( y =/= 0 -> -. ( y = 0 /\ z = 0 ) ) |
61 |
58 60
|
syl |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> -. ( y = 0 /\ z = 0 ) ) |
62 |
1 2 3
|
itg1addlem3 |
|- ( ( ( y e. RR /\ z e. RR ) /\ -. ( y = 0 /\ z = 0 ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
63 |
54 56 61 62
|
syl21anc |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
64 |
16
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
65 |
64 54 56
|
fovrnd |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
66 |
63 65
|
eqeltrrd |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) e. RR ) |
67 |
40 41 43 51 66
|
itg1addlem1 |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = sum_ z e. ran G ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
68 |
|
iunin2 |
|- U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) |
69 |
1
|
adantr |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> F e. dom S.1 ) |
70 |
69 44
|
syl |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) e. dom vol ) |
71 |
|
mblss |
|- ( ( `' F " { y } ) e. dom vol -> ( `' F " { y } ) C_ RR ) |
72 |
70 71
|
syl |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) C_ RR ) |
73 |
|
iunid |
|- U_ z e. ran G { z } = ran G |
74 |
73
|
imaeq2i |
|- ( `' G " U_ z e. ran G { z } ) = ( `' G " ran G ) |
75 |
|
imaiun |
|- ( `' G " U_ z e. ran G { z } ) = U_ z e. ran G ( `' G " { z } ) |
76 |
|
cnvimarndm |
|- ( `' G " ran G ) = dom G |
77 |
74 75 76
|
3eqtr3i |
|- U_ z e. ran G ( `' G " { z } ) = dom G |
78 |
40
|
fdmd |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> dom G = RR ) |
79 |
77 78
|
eqtrid |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> U_ z e. ran G ( `' G " { z } ) = RR ) |
80 |
72 79
|
sseqtrrd |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) C_ U_ z e. ran G ( `' G " { z } ) ) |
81 |
|
df-ss |
|- ( ( `' F " { y } ) C_ U_ z e. ran G ( `' G " { z } ) <-> ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) = ( `' F " { y } ) ) |
82 |
80 81
|
sylib |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) = ( `' F " { y } ) ) |
83 |
68 82
|
eqtr2id |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) = U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) |
84 |
83
|
fveq2d |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = ( vol ` U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
85 |
63
|
sumeq2dv |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> sum_ z e. ran G ( y I z ) = sum_ z e. ran G ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
86 |
67 84 85
|
3eqtr4d |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = sum_ z e. ran G ( y I z ) ) |
87 |
86
|
oveq2d |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. ( vol ` ( `' F " { y } ) ) ) = ( y x. sum_ z e. ran G ( y I z ) ) ) |
88 |
53
|
recnd |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> y e. CC ) |
89 |
65
|
recnd |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
90 |
41 88 89
|
fsummulc2 |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. sum_ z e. ran G ( y I z ) ) = sum_ z e. ran G ( y x. ( y I z ) ) ) |
91 |
87 90
|
eqtrd |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. ( vol ` ( `' F " { y } ) ) ) = sum_ z e. ran G ( y x. ( y I z ) ) ) |
92 |
91
|
sumeq2dv |
|- ( ph -> sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) = sum_ y e. ( ran F \ { 0 } ) sum_ z e. ran G ( y x. ( y I z ) ) ) |
93 |
|
difssd |
|- ( ph -> ( ran F \ { 0 } ) C_ ran F ) |
94 |
54
|
recnd |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y e. CC ) |
95 |
94 89
|
mulcld |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y x. ( y I z ) ) e. CC ) |
96 |
41 95
|
fsumcl |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> sum_ z e. ran G ( y x. ( y I z ) ) e. CC ) |
97 |
|
dfin4 |
|- ( ran F i^i { 0 } ) = ( ran F \ ( ran F \ { 0 } ) ) |
98 |
|
inss2 |
|- ( ran F i^i { 0 } ) C_ { 0 } |
99 |
97 98
|
eqsstrri |
|- ( ran F \ ( ran F \ { 0 } ) ) C_ { 0 } |
100 |
99
|
sseli |
|- ( y e. ( ran F \ ( ran F \ { 0 } ) ) -> y e. { 0 } ) |
101 |
|
elsni |
|- ( y e. { 0 } -> y = 0 ) |
102 |
101
|
ad2antlr |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> y = 0 ) |
103 |
102
|
oveq1d |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y x. ( y I z ) ) = ( 0 x. ( y I z ) ) ) |
104 |
16
|
ad2antrr |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
105 |
|
0re |
|- 0 e. RR |
106 |
102 105
|
eqeltrdi |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> y e. RR ) |
107 |
21
|
adantlr |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> z e. RR ) |
108 |
104 106 107
|
fovrnd |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
109 |
108
|
recnd |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
110 |
109
|
mul02d |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( 0 x. ( y I z ) ) = 0 ) |
111 |
103 110
|
eqtrd |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y x. ( y I z ) ) = 0 ) |
112 |
111
|
sumeq2dv |
|- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G ( y x. ( y I z ) ) = sum_ z e. ran G 0 ) |
113 |
8
|
adantr |
|- ( ( ph /\ y e. { 0 } ) -> ran G e. Fin ) |
114 |
113
|
olcd |
|- ( ( ph /\ y e. { 0 } ) -> ( ran G C_ ( ZZ>= ` 0 ) \/ ran G e. Fin ) ) |
115 |
|
sumz |
|- ( ( ran G C_ ( ZZ>= ` 0 ) \/ ran G e. Fin ) -> sum_ z e. ran G 0 = 0 ) |
116 |
114 115
|
syl |
|- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G 0 = 0 ) |
117 |
112 116
|
eqtrd |
|- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G ( y x. ( y I z ) ) = 0 ) |
118 |
100 117
|
sylan2 |
|- ( ( ph /\ y e. ( ran F \ ( ran F \ { 0 } ) ) ) -> sum_ z e. ran G ( y x. ( y I z ) ) = 0 ) |
119 |
93 96 118 6
|
fsumss |
|- ( ph -> sum_ y e. ( ran F \ { 0 } ) sum_ z e. ran G ( y x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) ) |
120 |
39 92 119
|
3eqtrd |
|- ( ph -> ( S.1 ` F ) = sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) ) |
121 |
|
itg1val |
|- ( G e. dom S.1 -> ( S.1 ` G ) = sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) ) |
122 |
2 121
|
syl |
|- ( ph -> ( S.1 ` G ) = sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) ) |
123 |
11
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> F : RR --> RR ) |
124 |
6
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ran F e. Fin ) |
125 |
|
inss1 |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) |
126 |
125
|
a1i |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) ) |
127 |
45
|
ad2antrr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( `' F " { y } ) e. dom vol ) |
128 |
48
|
ad2antrr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( `' G " { z } ) e. dom vol ) |
129 |
127 128 50
|
syl2anc |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
130 |
12
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ran F C_ RR ) |
131 |
130
|
sselda |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> y e. RR ) |
132 |
20
|
ssdifssd |
|- ( ph -> ( ran G \ { 0 } ) C_ RR ) |
133 |
132
|
sselda |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> z e. RR ) |
134 |
133
|
adantr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z e. RR ) |
135 |
|
eldifsni |
|- ( z e. ( ran G \ { 0 } ) -> z =/= 0 ) |
136 |
135
|
ad2antlr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z =/= 0 ) |
137 |
|
simpr |
|- ( ( y = 0 /\ z = 0 ) -> z = 0 ) |
138 |
137
|
necon3ai |
|- ( z =/= 0 -> -. ( y = 0 /\ z = 0 ) ) |
139 |
136 138
|
syl |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> -. ( y = 0 /\ z = 0 ) ) |
140 |
131 134 139 62
|
syl21anc |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
141 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
142 |
141 131 134
|
fovrnd |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
143 |
140 142
|
eqeltrrd |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) e. RR ) |
144 |
123 124 126 129 143
|
itg1addlem1 |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = sum_ y e. ran F ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
145 |
|
incom |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i ( `' F " { y } ) ) |
146 |
145
|
a1i |
|- ( y e. ran F -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i ( `' F " { y } ) ) ) |
147 |
146
|
iuneq2i |
|- U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = U_ y e. ran F ( ( `' G " { z } ) i^i ( `' F " { y } ) ) |
148 |
|
iunin2 |
|- U_ y e. ran F ( ( `' G " { z } ) i^i ( `' F " { y } ) ) = ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) |
149 |
147 148
|
eqtri |
|- U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) |
150 |
|
cnvimass |
|- ( `' G " { z } ) C_ dom G |
151 |
19
|
fdmd |
|- ( ph -> dom G = RR ) |
152 |
151
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> dom G = RR ) |
153 |
150 152
|
sseqtrid |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ RR ) |
154 |
|
iunid |
|- U_ y e. ran F { y } = ran F |
155 |
154
|
imaeq2i |
|- ( `' F " U_ y e. ran F { y } ) = ( `' F " ran F ) |
156 |
|
imaiun |
|- ( `' F " U_ y e. ran F { y } ) = U_ y e. ran F ( `' F " { y } ) |
157 |
|
cnvimarndm |
|- ( `' F " ran F ) = dom F |
158 |
155 156 157
|
3eqtr3i |
|- U_ y e. ran F ( `' F " { y } ) = dom F |
159 |
11
|
fdmd |
|- ( ph -> dom F = RR ) |
160 |
159
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> dom F = RR ) |
161 |
158 160
|
eqtrid |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> U_ y e. ran F ( `' F " { y } ) = RR ) |
162 |
153 161
|
sseqtrrd |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ U_ y e. ran F ( `' F " { y } ) ) |
163 |
|
df-ss |
|- ( ( `' G " { z } ) C_ U_ y e. ran F ( `' F " { y } ) <-> ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) = ( `' G " { z } ) ) |
164 |
162 163
|
sylib |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) = ( `' G " { z } ) ) |
165 |
149 164
|
eqtr2id |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) = U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) |
166 |
165
|
fveq2d |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = ( vol ` U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
167 |
140
|
sumeq2dv |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> sum_ y e. ran F ( y I z ) = sum_ y e. ran F ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
168 |
144 166 167
|
3eqtr4d |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = sum_ y e. ran F ( y I z ) ) |
169 |
168
|
oveq2d |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. ( vol ` ( `' G " { z } ) ) ) = ( z x. sum_ y e. ran F ( y I z ) ) ) |
170 |
133
|
recnd |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> z e. CC ) |
171 |
142
|
recnd |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
172 |
124 170 171
|
fsummulc2 |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. sum_ y e. ran F ( y I z ) ) = sum_ y e. ran F ( z x. ( y I z ) ) ) |
173 |
169 172
|
eqtrd |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. ( vol ` ( `' G " { z } ) ) ) = sum_ y e. ran F ( z x. ( y I z ) ) ) |
174 |
173
|
sumeq2dv |
|- ( ph -> sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) = sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) ) |
175 |
|
difssd |
|- ( ph -> ( ran G \ { 0 } ) C_ ran G ) |
176 |
170
|
adantr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z e. CC ) |
177 |
176 171
|
mulcld |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( z x. ( y I z ) ) e. CC ) |
178 |
124 177
|
fsumcl |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> sum_ y e. ran F ( z x. ( y I z ) ) e. CC ) |
179 |
|
dfin4 |
|- ( ran G i^i { 0 } ) = ( ran G \ ( ran G \ { 0 } ) ) |
180 |
|
inss2 |
|- ( ran G i^i { 0 } ) C_ { 0 } |
181 |
179 180
|
eqsstrri |
|- ( ran G \ ( ran G \ { 0 } ) ) C_ { 0 } |
182 |
181
|
sseli |
|- ( z e. ( ran G \ ( ran G \ { 0 } ) ) -> z e. { 0 } ) |
183 |
|
elsni |
|- ( z e. { 0 } -> z = 0 ) |
184 |
183
|
ad2antlr |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> z = 0 ) |
185 |
184
|
oveq1d |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( z x. ( y I z ) ) = ( 0 x. ( y I z ) ) ) |
186 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
187 |
13
|
adantlr |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> y e. RR ) |
188 |
184 105
|
eqeltrdi |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> z e. RR ) |
189 |
186 187 188
|
fovrnd |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
190 |
189
|
recnd |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
191 |
190
|
mul02d |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( 0 x. ( y I z ) ) = 0 ) |
192 |
185 191
|
eqtrd |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( z x. ( y I z ) ) = 0 ) |
193 |
192
|
sumeq2dv |
|- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F 0 ) |
194 |
6
|
adantr |
|- ( ( ph /\ z e. { 0 } ) -> ran F e. Fin ) |
195 |
194
|
olcd |
|- ( ( ph /\ z e. { 0 } ) -> ( ran F C_ ( ZZ>= ` 0 ) \/ ran F e. Fin ) ) |
196 |
|
sumz |
|- ( ( ran F C_ ( ZZ>= ` 0 ) \/ ran F e. Fin ) -> sum_ y e. ran F 0 = 0 ) |
197 |
195 196
|
syl |
|- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F 0 = 0 ) |
198 |
193 197
|
eqtrd |
|- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F ( z x. ( y I z ) ) = 0 ) |
199 |
182 198
|
sylan2 |
|- ( ( ph /\ z e. ( ran G \ ( ran G \ { 0 } ) ) ) -> sum_ y e. ran F ( z x. ( y I z ) ) = 0 ) |
200 |
175 178 199 8
|
fsumss |
|- ( ph -> sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) = sum_ z e. ran G sum_ y e. ran F ( z x. ( y I z ) ) ) |
201 |
21
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. RR ) |
202 |
201
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. CC ) |
203 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
204 |
12
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ran F C_ RR ) |
205 |
204
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. RR ) |
206 |
203 205 201
|
fovrnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
207 |
206
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
208 |
202 207
|
mulcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( z x. ( y I z ) ) e. CC ) |
209 |
208
|
anasss |
|- ( ( ph /\ ( z e. ran G /\ y e. ran F ) ) -> ( z x. ( y I z ) ) e. CC ) |
210 |
8 6 209
|
fsumcom |
|- ( ph -> sum_ z e. ran G sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
211 |
200 210
|
eqtrd |
|- ( ph -> sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
212 |
122 174 211
|
3eqtrd |
|- ( ph -> ( S.1 ` G ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
213 |
120 212
|
oveq12d |
|- ( ph -> ( ( S.1 ` F ) + ( S.1 ` G ) ) = ( sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) + sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
214 |
30 37 213
|
3eqtr4d |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) ) |