| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fadd.1 |
|- ( ph -> F e. dom S.1 ) |
| 2 |
|
i1fadd.2 |
|- ( ph -> G e. dom S.1 ) |
| 3 |
|
itg1add.3 |
|- I = ( i e. RR , j e. RR |-> if ( ( i = 0 /\ j = 0 ) , 0 , ( vol ` ( ( `' F " { i } ) i^i ( `' G " { j } ) ) ) ) ) |
| 4 |
|
itg1add.4 |
|- P = ( + |` ( ran F X. ran G ) ) |
| 5 |
|
i1frn |
|- ( F e. dom S.1 -> ran F e. Fin ) |
| 6 |
1 5
|
syl |
|- ( ph -> ran F e. Fin ) |
| 7 |
|
i1frn |
|- ( G e. dom S.1 -> ran G e. Fin ) |
| 8 |
2 7
|
syl |
|- ( ph -> ran G e. Fin ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ y e. ran F ) -> ran G e. Fin ) |
| 10 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 11 |
1 10
|
syl |
|- ( ph -> F : RR --> RR ) |
| 12 |
11
|
frnd |
|- ( ph -> ran F C_ RR ) |
| 13 |
12
|
sselda |
|- ( ( ph /\ y e. ran F ) -> y e. RR ) |
| 14 |
13
|
adantr |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> y e. RR ) |
| 15 |
14
|
recnd |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> y e. CC ) |
| 16 |
1 2 3
|
itg1addlem2 |
|- ( ph -> I : ( RR X. RR ) --> RR ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
| 18 |
|
i1ff |
|- ( G e. dom S.1 -> G : RR --> RR ) |
| 19 |
2 18
|
syl |
|- ( ph -> G : RR --> RR ) |
| 20 |
19
|
frnd |
|- ( ph -> ran G C_ RR ) |
| 21 |
20
|
sselda |
|- ( ( ph /\ z e. ran G ) -> z e. RR ) |
| 22 |
21
|
adantlr |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> z e. RR ) |
| 23 |
17 14 22
|
fovcdmd |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
| 24 |
23
|
recnd |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
| 25 |
15 24
|
mulcld |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( y x. ( y I z ) ) e. CC ) |
| 26 |
9 25
|
fsumcl |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( y x. ( y I z ) ) e. CC ) |
| 27 |
22
|
recnd |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> z e. CC ) |
| 28 |
27 24
|
mulcld |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( z x. ( y I z ) ) e. CC ) |
| 29 |
9 28
|
fsumcl |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( z x. ( y I z ) ) e. CC ) |
| 30 |
6 26 29
|
fsumadd |
|- ( ph -> sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) = ( sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) + sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 31 |
1 2 3 4
|
itg1addlem4 |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) ) |
| 32 |
15 27 24
|
adddird |
|- ( ( ( ph /\ y e. ran F ) /\ z e. ran G ) -> ( ( y + z ) x. ( y I z ) ) = ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) ) |
| 33 |
32
|
sumeq2dv |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = sum_ z e. ran G ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) ) |
| 34 |
9 25 28
|
fsumadd |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y x. ( y I z ) ) + ( z x. ( y I z ) ) ) = ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 35 |
33 34
|
eqtrd |
|- ( ( ph /\ y e. ran F ) -> sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 36 |
35
|
sumeq2dv |
|- ( ph -> sum_ y e. ran F sum_ z e. ran G ( ( y + z ) x. ( y I z ) ) = sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 37 |
31 36
|
eqtrd |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = sum_ y e. ran F ( sum_ z e. ran G ( y x. ( y I z ) ) + sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 38 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) ) |
| 39 |
1 38
|
syl |
|- ( ph -> ( S.1 ` F ) = sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) ) |
| 40 |
19
|
adantr |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> G : RR --> RR ) |
| 41 |
8
|
adantr |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ran G e. Fin ) |
| 42 |
|
inss2 |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) |
| 43 |
42
|
a1i |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' G " { z } ) ) |
| 44 |
|
i1fima |
|- ( F e. dom S.1 -> ( `' F " { y } ) e. dom vol ) |
| 45 |
1 44
|
syl |
|- ( ph -> ( `' F " { y } ) e. dom vol ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( `' F " { y } ) e. dom vol ) |
| 47 |
|
i1fima |
|- ( G e. dom S.1 -> ( `' G " { z } ) e. dom vol ) |
| 48 |
2 47
|
syl |
|- ( ph -> ( `' G " { z } ) e. dom vol ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( `' G " { z } ) e. dom vol ) |
| 50 |
|
inmbl |
|- ( ( ( `' F " { y } ) e. dom vol /\ ( `' G " { z } ) e. dom vol ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 51 |
46 49 50
|
syl2anc |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 52 |
12
|
ssdifssd |
|- ( ph -> ( ran F \ { 0 } ) C_ RR ) |
| 53 |
52
|
sselda |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> y e. RR ) |
| 54 |
53
|
adantr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y e. RR ) |
| 55 |
20
|
adantr |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ran G C_ RR ) |
| 56 |
55
|
sselda |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> z e. RR ) |
| 57 |
|
eldifsni |
|- ( y e. ( ran F \ { 0 } ) -> y =/= 0 ) |
| 58 |
57
|
ad2antlr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y =/= 0 ) |
| 59 |
|
simpl |
|- ( ( y = 0 /\ z = 0 ) -> y = 0 ) |
| 60 |
59
|
necon3ai |
|- ( y =/= 0 -> -. ( y = 0 /\ z = 0 ) ) |
| 61 |
58 60
|
syl |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> -. ( y = 0 /\ z = 0 ) ) |
| 62 |
1 2 3
|
itg1addlem3 |
|- ( ( ( y e. RR /\ z e. RR ) /\ -. ( y = 0 /\ z = 0 ) ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 63 |
54 56 61 62
|
syl21anc |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 64 |
16
|
ad2antrr |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
| 65 |
64 54 56
|
fovcdmd |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
| 66 |
63 65
|
eqeltrrd |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 67 |
40 41 43 51 66
|
itg1addlem1 |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = sum_ z e. ran G ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 68 |
|
iunin2 |
|- U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) |
| 69 |
1
|
adantr |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> F e. dom S.1 ) |
| 70 |
69 44
|
syl |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) e. dom vol ) |
| 71 |
|
mblss |
|- ( ( `' F " { y } ) e. dom vol -> ( `' F " { y } ) C_ RR ) |
| 72 |
70 71
|
syl |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) C_ RR ) |
| 73 |
|
iunid |
|- U_ z e. ran G { z } = ran G |
| 74 |
73
|
imaeq2i |
|- ( `' G " U_ z e. ran G { z } ) = ( `' G " ran G ) |
| 75 |
|
imaiun |
|- ( `' G " U_ z e. ran G { z } ) = U_ z e. ran G ( `' G " { z } ) |
| 76 |
|
cnvimarndm |
|- ( `' G " ran G ) = dom G |
| 77 |
74 75 76
|
3eqtr3i |
|- U_ z e. ran G ( `' G " { z } ) = dom G |
| 78 |
40
|
fdmd |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> dom G = RR ) |
| 79 |
77 78
|
eqtrid |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> U_ z e. ran G ( `' G " { z } ) = RR ) |
| 80 |
72 79
|
sseqtrrd |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) C_ U_ z e. ran G ( `' G " { z } ) ) |
| 81 |
|
dfss2 |
|- ( ( `' F " { y } ) C_ U_ z e. ran G ( `' G " { z } ) <-> ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) = ( `' F " { y } ) ) |
| 82 |
80 81
|
sylib |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( ( `' F " { y } ) i^i U_ z e. ran G ( `' G " { z } ) ) = ( `' F " { y } ) ) |
| 83 |
68 82
|
eqtr2id |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( `' F " { y } ) = U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) |
| 84 |
83
|
fveq2d |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = ( vol ` U_ z e. ran G ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 85 |
63
|
sumeq2dv |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> sum_ z e. ran G ( y I z ) = sum_ z e. ran G ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 86 |
67 84 85
|
3eqtr4d |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { y } ) ) = sum_ z e. ran G ( y I z ) ) |
| 87 |
86
|
oveq2d |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. ( vol ` ( `' F " { y } ) ) ) = ( y x. sum_ z e. ran G ( y I z ) ) ) |
| 88 |
53
|
recnd |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> y e. CC ) |
| 89 |
65
|
recnd |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
| 90 |
41 88 89
|
fsummulc2 |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. sum_ z e. ran G ( y I z ) ) = sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 91 |
87 90
|
eqtrd |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> ( y x. ( vol ` ( `' F " { y } ) ) ) = sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 92 |
91
|
sumeq2dv |
|- ( ph -> sum_ y e. ( ran F \ { 0 } ) ( y x. ( vol ` ( `' F " { y } ) ) ) = sum_ y e. ( ran F \ { 0 } ) sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 93 |
|
difssd |
|- ( ph -> ( ran F \ { 0 } ) C_ ran F ) |
| 94 |
54
|
recnd |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> y e. CC ) |
| 95 |
94 89
|
mulcld |
|- ( ( ( ph /\ y e. ( ran F \ { 0 } ) ) /\ z e. ran G ) -> ( y x. ( y I z ) ) e. CC ) |
| 96 |
41 95
|
fsumcl |
|- ( ( ph /\ y e. ( ran F \ { 0 } ) ) -> sum_ z e. ran G ( y x. ( y I z ) ) e. CC ) |
| 97 |
|
dfin4 |
|- ( ran F i^i { 0 } ) = ( ran F \ ( ran F \ { 0 } ) ) |
| 98 |
|
inss2 |
|- ( ran F i^i { 0 } ) C_ { 0 } |
| 99 |
97 98
|
eqsstrri |
|- ( ran F \ ( ran F \ { 0 } ) ) C_ { 0 } |
| 100 |
99
|
sseli |
|- ( y e. ( ran F \ ( ran F \ { 0 } ) ) -> y e. { 0 } ) |
| 101 |
|
elsni |
|- ( y e. { 0 } -> y = 0 ) |
| 102 |
101
|
ad2antlr |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> y = 0 ) |
| 103 |
102
|
oveq1d |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y x. ( y I z ) ) = ( 0 x. ( y I z ) ) ) |
| 104 |
16
|
ad2antrr |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> I : ( RR X. RR ) --> RR ) |
| 105 |
|
0re |
|- 0 e. RR |
| 106 |
102 105
|
eqeltrdi |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> y e. RR ) |
| 107 |
21
|
adantlr |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> z e. RR ) |
| 108 |
104 106 107
|
fovcdmd |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y I z ) e. RR ) |
| 109 |
108
|
recnd |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y I z ) e. CC ) |
| 110 |
109
|
mul02d |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( 0 x. ( y I z ) ) = 0 ) |
| 111 |
103 110
|
eqtrd |
|- ( ( ( ph /\ y e. { 0 } ) /\ z e. ran G ) -> ( y x. ( y I z ) ) = 0 ) |
| 112 |
111
|
sumeq2dv |
|- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G ( y x. ( y I z ) ) = sum_ z e. ran G 0 ) |
| 113 |
8
|
adantr |
|- ( ( ph /\ y e. { 0 } ) -> ran G e. Fin ) |
| 114 |
113
|
olcd |
|- ( ( ph /\ y e. { 0 } ) -> ( ran G C_ ( ZZ>= ` 0 ) \/ ran G e. Fin ) ) |
| 115 |
|
sumz |
|- ( ( ran G C_ ( ZZ>= ` 0 ) \/ ran G e. Fin ) -> sum_ z e. ran G 0 = 0 ) |
| 116 |
114 115
|
syl |
|- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G 0 = 0 ) |
| 117 |
112 116
|
eqtrd |
|- ( ( ph /\ y e. { 0 } ) -> sum_ z e. ran G ( y x. ( y I z ) ) = 0 ) |
| 118 |
100 117
|
sylan2 |
|- ( ( ph /\ y e. ( ran F \ ( ran F \ { 0 } ) ) ) -> sum_ z e. ran G ( y x. ( y I z ) ) = 0 ) |
| 119 |
93 96 118 6
|
fsumss |
|- ( ph -> sum_ y e. ( ran F \ { 0 } ) sum_ z e. ran G ( y x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 120 |
39 92 119
|
3eqtrd |
|- ( ph -> ( S.1 ` F ) = sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) ) |
| 121 |
|
itg1val |
|- ( G e. dom S.1 -> ( S.1 ` G ) = sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) ) |
| 122 |
2 121
|
syl |
|- ( ph -> ( S.1 ` G ) = sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) ) |
| 123 |
11
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> F : RR --> RR ) |
| 124 |
6
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ran F e. Fin ) |
| 125 |
|
inss1 |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) |
| 126 |
125
|
a1i |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) C_ ( `' F " { y } ) ) |
| 127 |
45
|
ad2antrr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( `' F " { y } ) e. dom vol ) |
| 128 |
48
|
ad2antrr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( `' G " { z } ) e. dom vol ) |
| 129 |
127 128 50
|
syl2anc |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) e. dom vol ) |
| 130 |
12
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ran F C_ RR ) |
| 131 |
130
|
sselda |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> y e. RR ) |
| 132 |
20
|
ssdifssd |
|- ( ph -> ( ran G \ { 0 } ) C_ RR ) |
| 133 |
132
|
sselda |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> z e. RR ) |
| 134 |
133
|
adantr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z e. RR ) |
| 135 |
|
eldifsni |
|- ( z e. ( ran G \ { 0 } ) -> z =/= 0 ) |
| 136 |
135
|
ad2antlr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z =/= 0 ) |
| 137 |
|
simpr |
|- ( ( y = 0 /\ z = 0 ) -> z = 0 ) |
| 138 |
137
|
necon3ai |
|- ( z =/= 0 -> -. ( y = 0 /\ z = 0 ) ) |
| 139 |
136 138
|
syl |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> -. ( y = 0 /\ z = 0 ) ) |
| 140 |
131 134 139 62
|
syl21anc |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) = ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 141 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
| 142 |
141 131 134
|
fovcdmd |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
| 143 |
140 142
|
eqeltrrd |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) e. RR ) |
| 144 |
123 124 126 129 143
|
itg1addlem1 |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) = sum_ y e. ran F ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 145 |
|
incom |
|- ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i ( `' F " { y } ) ) |
| 146 |
145
|
a1i |
|- ( y e. ran F -> ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i ( `' F " { y } ) ) ) |
| 147 |
146
|
iuneq2i |
|- U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = U_ y e. ran F ( ( `' G " { z } ) i^i ( `' F " { y } ) ) |
| 148 |
|
iunin2 |
|- U_ y e. ran F ( ( `' G " { z } ) i^i ( `' F " { y } ) ) = ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) |
| 149 |
147 148
|
eqtri |
|- U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) = ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) |
| 150 |
|
cnvimass |
|- ( `' G " { z } ) C_ dom G |
| 151 |
19
|
fdmd |
|- ( ph -> dom G = RR ) |
| 152 |
151
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> dom G = RR ) |
| 153 |
150 152
|
sseqtrid |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ RR ) |
| 154 |
|
iunid |
|- U_ y e. ran F { y } = ran F |
| 155 |
154
|
imaeq2i |
|- ( `' F " U_ y e. ran F { y } ) = ( `' F " ran F ) |
| 156 |
|
imaiun |
|- ( `' F " U_ y e. ran F { y } ) = U_ y e. ran F ( `' F " { y } ) |
| 157 |
|
cnvimarndm |
|- ( `' F " ran F ) = dom F |
| 158 |
155 156 157
|
3eqtr3i |
|- U_ y e. ran F ( `' F " { y } ) = dom F |
| 159 |
11
|
fdmd |
|- ( ph -> dom F = RR ) |
| 160 |
159
|
adantr |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> dom F = RR ) |
| 161 |
158 160
|
eqtrid |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> U_ y e. ran F ( `' F " { y } ) = RR ) |
| 162 |
153 161
|
sseqtrrd |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) C_ U_ y e. ran F ( `' F " { y } ) ) |
| 163 |
|
dfss2 |
|- ( ( `' G " { z } ) C_ U_ y e. ran F ( `' F " { y } ) <-> ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) = ( `' G " { z } ) ) |
| 164 |
162 163
|
sylib |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( ( `' G " { z } ) i^i U_ y e. ran F ( `' F " { y } ) ) = ( `' G " { z } ) ) |
| 165 |
149 164
|
eqtr2id |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( `' G " { z } ) = U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) |
| 166 |
165
|
fveq2d |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = ( vol ` U_ y e. ran F ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 167 |
140
|
sumeq2dv |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> sum_ y e. ran F ( y I z ) = sum_ y e. ran F ( vol ` ( ( `' F " { y } ) i^i ( `' G " { z } ) ) ) ) |
| 168 |
144 166 167
|
3eqtr4d |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( vol ` ( `' G " { z } ) ) = sum_ y e. ran F ( y I z ) ) |
| 169 |
168
|
oveq2d |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. ( vol ` ( `' G " { z } ) ) ) = ( z x. sum_ y e. ran F ( y I z ) ) ) |
| 170 |
133
|
recnd |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> z e. CC ) |
| 171 |
142
|
recnd |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
| 172 |
124 170 171
|
fsummulc2 |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. sum_ y e. ran F ( y I z ) ) = sum_ y e. ran F ( z x. ( y I z ) ) ) |
| 173 |
169 172
|
eqtrd |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> ( z x. ( vol ` ( `' G " { z } ) ) ) = sum_ y e. ran F ( z x. ( y I z ) ) ) |
| 174 |
173
|
sumeq2dv |
|- ( ph -> sum_ z e. ( ran G \ { 0 } ) ( z x. ( vol ` ( `' G " { z } ) ) ) = sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) ) |
| 175 |
|
difssd |
|- ( ph -> ( ran G \ { 0 } ) C_ ran G ) |
| 176 |
170
|
adantr |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> z e. CC ) |
| 177 |
176 171
|
mulcld |
|- ( ( ( ph /\ z e. ( ran G \ { 0 } ) ) /\ y e. ran F ) -> ( z x. ( y I z ) ) e. CC ) |
| 178 |
124 177
|
fsumcl |
|- ( ( ph /\ z e. ( ran G \ { 0 } ) ) -> sum_ y e. ran F ( z x. ( y I z ) ) e. CC ) |
| 179 |
|
dfin4 |
|- ( ran G i^i { 0 } ) = ( ran G \ ( ran G \ { 0 } ) ) |
| 180 |
|
inss2 |
|- ( ran G i^i { 0 } ) C_ { 0 } |
| 181 |
179 180
|
eqsstrri |
|- ( ran G \ ( ran G \ { 0 } ) ) C_ { 0 } |
| 182 |
181
|
sseli |
|- ( z e. ( ran G \ ( ran G \ { 0 } ) ) -> z e. { 0 } ) |
| 183 |
|
elsni |
|- ( z e. { 0 } -> z = 0 ) |
| 184 |
183
|
ad2antlr |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> z = 0 ) |
| 185 |
184
|
oveq1d |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( z x. ( y I z ) ) = ( 0 x. ( y I z ) ) ) |
| 186 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
| 187 |
13
|
adantlr |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> y e. RR ) |
| 188 |
184 105
|
eqeltrdi |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> z e. RR ) |
| 189 |
186 187 188
|
fovcdmd |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
| 190 |
189
|
recnd |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
| 191 |
190
|
mul02d |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( 0 x. ( y I z ) ) = 0 ) |
| 192 |
185 191
|
eqtrd |
|- ( ( ( ph /\ z e. { 0 } ) /\ y e. ran F ) -> ( z x. ( y I z ) ) = 0 ) |
| 193 |
192
|
sumeq2dv |
|- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F 0 ) |
| 194 |
6
|
adantr |
|- ( ( ph /\ z e. { 0 } ) -> ran F e. Fin ) |
| 195 |
194
|
olcd |
|- ( ( ph /\ z e. { 0 } ) -> ( ran F C_ ( ZZ>= ` 0 ) \/ ran F e. Fin ) ) |
| 196 |
|
sumz |
|- ( ( ran F C_ ( ZZ>= ` 0 ) \/ ran F e. Fin ) -> sum_ y e. ran F 0 = 0 ) |
| 197 |
195 196
|
syl |
|- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F 0 = 0 ) |
| 198 |
193 197
|
eqtrd |
|- ( ( ph /\ z e. { 0 } ) -> sum_ y e. ran F ( z x. ( y I z ) ) = 0 ) |
| 199 |
182 198
|
sylan2 |
|- ( ( ph /\ z e. ( ran G \ ( ran G \ { 0 } ) ) ) -> sum_ y e. ran F ( z x. ( y I z ) ) = 0 ) |
| 200 |
175 178 199 8
|
fsumss |
|- ( ph -> sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) = sum_ z e. ran G sum_ y e. ran F ( z x. ( y I z ) ) ) |
| 201 |
21
|
adantr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. RR ) |
| 202 |
201
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> z e. CC ) |
| 203 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> I : ( RR X. RR ) --> RR ) |
| 204 |
12
|
adantr |
|- ( ( ph /\ z e. ran G ) -> ran F C_ RR ) |
| 205 |
204
|
sselda |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> y e. RR ) |
| 206 |
203 205 201
|
fovcdmd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. RR ) |
| 207 |
206
|
recnd |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( y I z ) e. CC ) |
| 208 |
202 207
|
mulcld |
|- ( ( ( ph /\ z e. ran G ) /\ y e. ran F ) -> ( z x. ( y I z ) ) e. CC ) |
| 209 |
208
|
anasss |
|- ( ( ph /\ ( z e. ran G /\ y e. ran F ) ) -> ( z x. ( y I z ) ) e. CC ) |
| 210 |
8 6 209
|
fsumcom |
|- ( ph -> sum_ z e. ran G sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
| 211 |
200 210
|
eqtrd |
|- ( ph -> sum_ z e. ( ran G \ { 0 } ) sum_ y e. ran F ( z x. ( y I z ) ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
| 212 |
122 174 211
|
3eqtrd |
|- ( ph -> ( S.1 ` G ) = sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) |
| 213 |
120 212
|
oveq12d |
|- ( ph -> ( ( S.1 ` F ) + ( S.1 ` G ) ) = ( sum_ y e. ran F sum_ z e. ran G ( y x. ( y I z ) ) + sum_ y e. ran F sum_ z e. ran G ( z x. ( y I z ) ) ) ) |
| 214 |
30 37 213
|
3eqtr4d |
|- ( ph -> ( S.1 ` ( F oF + G ) ) = ( ( S.1 ` F ) + ( S.1 ` G ) ) ) |