Step |
Hyp |
Ref |
Expression |
1 |
|
itsclquadb.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itsclquadb.t |
|- T = -u ( 2 x. ( B x. C ) ) |
3 |
|
itsclquadb.u |
|- U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
4 |
|
oveq1 |
|- ( x = z -> ( x ^ 2 ) = ( z ^ 2 ) ) |
5 |
4
|
oveq1d |
|- ( x = z -> ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( ( z ^ 2 ) + ( Y ^ 2 ) ) ) |
6 |
5
|
eqeq1d |
|- ( x = z -> ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) ) |
7 |
|
oveq2 |
|- ( x = z -> ( A x. x ) = ( A x. z ) ) |
8 |
7
|
oveq1d |
|- ( x = z -> ( ( A x. x ) + ( B x. Y ) ) = ( ( A x. z ) + ( B x. Y ) ) ) |
9 |
8
|
eqeq1d |
|- ( x = z -> ( ( ( A x. x ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = C ) ) |
10 |
6 9
|
anbi12d |
|- ( x = z -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) ) ) |
11 |
10
|
reu8 |
|- ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) |
12 |
11
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) ) |
13 |
|
id |
|- ( C = ( ( A x. x ) + ( B x. Y ) ) -> C = ( ( A x. x ) + ( B x. Y ) ) ) |
14 |
13
|
eqcoms |
|- ( ( ( A x. x ) + ( B x. Y ) ) = C -> C = ( ( A x. x ) + ( B x. Y ) ) ) |
15 |
14
|
eqeq2d |
|- ( ( ( A x. x ) + ( B x. Y ) ) = C -> ( ( ( A x. z ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) ) ) |
16 |
15
|
adantl |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) ) ) |
17 |
|
simp11l |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> A e. RR ) |
18 |
17
|
ad2antrr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A e. RR ) |
19 |
|
simpr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> z e. RR ) |
20 |
18 19
|
remulcld |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. z ) e. RR ) |
21 |
20
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. z ) e. CC ) |
22 |
17
|
adantr |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> A e. RR ) |
23 |
|
simpr |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> x e. RR ) |
24 |
22 23
|
remulcld |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( A x. x ) e. RR ) |
25 |
24
|
adantr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. x ) e. RR ) |
26 |
25
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. x ) e. CC ) |
27 |
|
simp12 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> B e. RR ) |
28 |
|
simp3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> Y e. RR ) |
29 |
27 28
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( B x. Y ) e. RR ) |
30 |
29
|
ad2antrr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( B x. Y ) e. RR ) |
31 |
30
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( B x. Y ) e. CC ) |
32 |
21 26 31
|
addcan2d |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) <-> ( A x. z ) = ( A x. x ) ) ) |
33 |
19
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> z e. CC ) |
34 |
|
simplr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> x e. RR ) |
35 |
34
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> x e. CC ) |
36 |
18
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A e. CC ) |
37 |
|
simp11r |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> A =/= 0 ) |
38 |
37
|
ad2antrr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A =/= 0 ) |
39 |
33 35 36 38
|
mulcand |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( A x. z ) = ( A x. x ) <-> z = x ) ) |
40 |
|
equcom |
|- ( z = x <-> x = z ) |
41 |
40
|
a1i |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( z = x <-> x = z ) ) |
42 |
32 39 41
|
3bitrd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) <-> x = z ) ) |
43 |
42
|
biimpd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) -> x = z ) ) |
44 |
43
|
adantr |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) -> x = z ) ) |
45 |
16 44
|
sylbid |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C -> x = z ) ) |
46 |
45
|
an32s |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C -> x = z ) ) |
47 |
46
|
adantld |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ z e. RR ) -> ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) |
48 |
47
|
ralrimiva |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) |
49 |
48
|
ex |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( A x. x ) + ( B x. Y ) ) = C -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) |
50 |
49
|
adantld |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) |
51 |
50
|
pm4.71d |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) ) |
52 |
51
|
bicomd |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) <-> ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) ) ) |
53 |
52
|
rexbidva |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) <-> E. x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) ) ) |
54 |
1 2 3
|
itsclquadb |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E. x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
55 |
12 53 54
|
3bitrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |