| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itsclquadb.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 2 |
|
itsclquadb.t |
|- T = -u ( 2 x. ( B x. C ) ) |
| 3 |
|
itsclquadb.u |
|- U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
| 4 |
|
oveq1 |
|- ( x = z -> ( x ^ 2 ) = ( z ^ 2 ) ) |
| 5 |
4
|
oveq1d |
|- ( x = z -> ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( ( z ^ 2 ) + ( Y ^ 2 ) ) ) |
| 6 |
5
|
eqeq1d |
|- ( x = z -> ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 7 |
|
oveq2 |
|- ( x = z -> ( A x. x ) = ( A x. z ) ) |
| 8 |
7
|
oveq1d |
|- ( x = z -> ( ( A x. x ) + ( B x. Y ) ) = ( ( A x. z ) + ( B x. Y ) ) ) |
| 9 |
8
|
eqeq1d |
|- ( x = z -> ( ( ( A x. x ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = C ) ) |
| 10 |
6 9
|
anbi12d |
|- ( x = z -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) ) ) |
| 11 |
10
|
reu8 |
|- ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) |
| 12 |
11
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) ) |
| 13 |
|
id |
|- ( C = ( ( A x. x ) + ( B x. Y ) ) -> C = ( ( A x. x ) + ( B x. Y ) ) ) |
| 14 |
13
|
eqcoms |
|- ( ( ( A x. x ) + ( B x. Y ) ) = C -> C = ( ( A x. x ) + ( B x. Y ) ) ) |
| 15 |
14
|
eqeq2d |
|- ( ( ( A x. x ) + ( B x. Y ) ) = C -> ( ( ( A x. z ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) ) ) |
| 17 |
|
simp11l |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> A e. RR ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A e. RR ) |
| 19 |
|
simpr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> z e. RR ) |
| 20 |
18 19
|
remulcld |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. z ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. z ) e. CC ) |
| 22 |
17
|
adantr |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> A e. RR ) |
| 23 |
|
simpr |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> x e. RR ) |
| 24 |
22 23
|
remulcld |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( A x. x ) e. RR ) |
| 25 |
24
|
adantr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. x ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. x ) e. CC ) |
| 27 |
|
simp12 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> B e. RR ) |
| 28 |
|
simp3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> Y e. RR ) |
| 29 |
27 28
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( B x. Y ) e. RR ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( B x. Y ) e. RR ) |
| 31 |
30
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( B x. Y ) e. CC ) |
| 32 |
21 26 31
|
addcan2d |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) <-> ( A x. z ) = ( A x. x ) ) ) |
| 33 |
19
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> z e. CC ) |
| 34 |
|
simplr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> x e. RR ) |
| 35 |
34
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> x e. CC ) |
| 36 |
18
|
recnd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A e. CC ) |
| 37 |
|
simp11r |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> A =/= 0 ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A =/= 0 ) |
| 39 |
33 35 36 38
|
mulcand |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( A x. z ) = ( A x. x ) <-> z = x ) ) |
| 40 |
|
equcom |
|- ( z = x <-> x = z ) |
| 41 |
40
|
a1i |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( z = x <-> x = z ) ) |
| 42 |
32 39 41
|
3bitrd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) <-> x = z ) ) |
| 43 |
42
|
biimpd |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) -> x = z ) ) |
| 44 |
43
|
adantr |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) -> x = z ) ) |
| 45 |
16 44
|
sylbid |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C -> x = z ) ) |
| 46 |
45
|
an32s |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C -> x = z ) ) |
| 47 |
46
|
adantld |
|- ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ z e. RR ) -> ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) |
| 48 |
47
|
ralrimiva |
|- ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) |
| 49 |
48
|
ex |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( A x. x ) + ( B x. Y ) ) = C -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) |
| 50 |
49
|
adantld |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) |
| 51 |
50
|
pm4.71d |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) ) |
| 52 |
51
|
bicomd |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) <-> ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) ) ) |
| 53 |
52
|
rexbidva |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) <-> E. x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) ) ) |
| 54 |
1 2 3
|
itsclquadb |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E. x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
| 55 |
12 53 54
|
3bitrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |