| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itsclquadb.q |  |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) | 
						
							| 2 |  | itsclquadb.t |  |-  T = -u ( 2 x. ( B x. C ) ) | 
						
							| 3 |  | itsclquadb.u |  |-  U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) | 
						
							| 4 |  | oveq1 |  |-  ( x = z -> ( x ^ 2 ) = ( z ^ 2 ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( x = z -> ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( ( z ^ 2 ) + ( Y ^ 2 ) ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( x = z -> ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( x = z -> ( A x. x ) = ( A x. z ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( x = z -> ( ( A x. x ) + ( B x. Y ) ) = ( ( A x. z ) + ( B x. Y ) ) ) | 
						
							| 9 | 8 | eqeq1d |  |-  ( x = z -> ( ( ( A x. x ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = C ) ) | 
						
							| 10 | 6 9 | anbi12d |  |-  ( x = z -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) ) ) | 
						
							| 11 | 10 | reu8 |  |-  ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) | 
						
							| 12 | 11 | a1i |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) ) | 
						
							| 13 |  | id |  |-  ( C = ( ( A x. x ) + ( B x. Y ) ) -> C = ( ( A x. x ) + ( B x. Y ) ) ) | 
						
							| 14 | 13 | eqcoms |  |-  ( ( ( A x. x ) + ( B x. Y ) ) = C -> C = ( ( A x. x ) + ( B x. Y ) ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ( ( A x. x ) + ( B x. Y ) ) = C -> ( ( ( A x. z ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C <-> ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) ) ) | 
						
							| 17 |  | simp11l |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> A e. RR ) | 
						
							| 18 | 17 | ad2antrr |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A e. RR ) | 
						
							| 19 |  | simpr |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> z e. RR ) | 
						
							| 20 | 18 19 | remulcld |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. z ) e. RR ) | 
						
							| 21 | 20 | recnd |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. z ) e. CC ) | 
						
							| 22 | 17 | adantr |  |-  ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> A e. RR ) | 
						
							| 23 |  | simpr |  |-  ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> x e. RR ) | 
						
							| 24 | 22 23 | remulcld |  |-  ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( A x. x ) e. RR ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. x ) e. RR ) | 
						
							| 26 | 25 | recnd |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( A x. x ) e. CC ) | 
						
							| 27 |  | simp12 |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> B e. RR ) | 
						
							| 28 |  | simp3 |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> Y e. RR ) | 
						
							| 29 | 27 28 | remulcld |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( B x. Y ) e. RR ) | 
						
							| 30 | 29 | ad2antrr |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( B x. Y ) e. RR ) | 
						
							| 31 | 30 | recnd |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( B x. Y ) e. CC ) | 
						
							| 32 | 21 26 31 | addcan2d |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) <-> ( A x. z ) = ( A x. x ) ) ) | 
						
							| 33 | 19 | recnd |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> z e. CC ) | 
						
							| 34 |  | simplr |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> x e. RR ) | 
						
							| 35 | 34 | recnd |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> x e. CC ) | 
						
							| 36 | 18 | recnd |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A e. CC ) | 
						
							| 37 |  | simp11r |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> A =/= 0 ) | 
						
							| 38 | 37 | ad2antrr |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> A =/= 0 ) | 
						
							| 39 | 33 35 36 38 | mulcand |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( A x. z ) = ( A x. x ) <-> z = x ) ) | 
						
							| 40 |  | equcom |  |-  ( z = x <-> x = z ) | 
						
							| 41 | 40 | a1i |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( z = x <-> x = z ) ) | 
						
							| 42 | 32 39 41 | 3bitrd |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) <-> x = z ) ) | 
						
							| 43 | 42 | biimpd |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) -> x = z ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = ( ( A x. x ) + ( B x. Y ) ) -> x = z ) ) | 
						
							| 45 | 16 44 | sylbid |  |-  ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ z e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C -> x = z ) ) | 
						
							| 46 | 45 | an32s |  |-  ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ z e. RR ) -> ( ( ( A x. z ) + ( B x. Y ) ) = C -> x = z ) ) | 
						
							| 47 | 46 | adantld |  |-  ( ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ z e. RR ) -> ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) | 
						
							| 48 | 47 | ralrimiva |  |-  ( ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) | 
						
							| 49 | 48 | ex |  |-  ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( A x. x ) + ( B x. Y ) ) = C -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) | 
						
							| 50 | 49 | adantld |  |-  ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) -> A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) | 
						
							| 51 | 50 | pm4.71d |  |-  ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) ) ) | 
						
							| 52 | 51 | bicomd |  |-  ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) /\ x e. RR ) -> ( ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) <-> ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) ) ) | 
						
							| 53 | 52 | rexbidva |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E. x e. RR ( ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) /\ A. z e. RR ( ( ( ( z ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. z ) + ( B x. Y ) ) = C ) -> x = z ) ) <-> E. x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) ) ) | 
						
							| 54 | 1 2 3 | itsclquadb |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E. x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) | 
						
							| 55 | 12 53 54 | 3bitrd |  |-  ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ Y e. RR ) -> ( E! x e. RR ( ( ( x ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. x ) + ( B x. Y ) ) = C ) <-> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |