Step |
Hyp |
Ref |
Expression |
1 |
|
itsclquadb.q |
|
2 |
|
itsclquadb.t |
|
3 |
|
itsclquadb.u |
|
4 |
|
oveq1 |
|
5 |
4
|
oveq1d |
|
6 |
5
|
eqeq1d |
|
7 |
|
oveq2 |
|
8 |
7
|
oveq1d |
|
9 |
8
|
eqeq1d |
|
10 |
6 9
|
anbi12d |
|
11 |
10
|
reu8 |
|
12 |
11
|
a1i |
|
13 |
|
id |
|
14 |
13
|
eqcoms |
|
15 |
14
|
eqeq2d |
|
16 |
15
|
adantl |
|
17 |
|
simp11l |
|
18 |
17
|
ad2antrr |
|
19 |
|
simpr |
|
20 |
18 19
|
remulcld |
|
21 |
20
|
recnd |
|
22 |
17
|
adantr |
|
23 |
|
simpr |
|
24 |
22 23
|
remulcld |
|
25 |
24
|
adantr |
|
26 |
25
|
recnd |
|
27 |
|
simp12 |
|
28 |
|
simp3 |
|
29 |
27 28
|
remulcld |
|
30 |
29
|
ad2antrr |
|
31 |
30
|
recnd |
|
32 |
21 26 31
|
addcan2d |
|
33 |
19
|
recnd |
|
34 |
|
simplr |
|
35 |
34
|
recnd |
|
36 |
18
|
recnd |
|
37 |
|
simp11r |
|
38 |
37
|
ad2antrr |
|
39 |
33 35 36 38
|
mulcand |
|
40 |
|
equcom |
|
41 |
40
|
a1i |
|
42 |
32 39 41
|
3bitrd |
|
43 |
42
|
biimpd |
|
44 |
43
|
adantr |
|
45 |
16 44
|
sylbid |
|
46 |
45
|
an32s |
|
47 |
46
|
adantld |
|
48 |
47
|
ralrimiva |
|
49 |
48
|
ex |
|
50 |
49
|
adantld |
|
51 |
50
|
pm4.71d |
|
52 |
51
|
bicomd |
|
53 |
52
|
rexbidva |
|
54 |
1 2 3
|
itsclquadb |
|
55 |
12 53 54
|
3bitrd |
|