| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgseisen.1 |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | lgseisen.2 |  |-  ( ph -> Q e. ( Prime \ { 2 } ) ) | 
						
							| 3 |  | lgseisen.3 |  |-  ( ph -> P =/= Q ) | 
						
							| 4 | 2 | eldifad |  |-  ( ph -> Q e. Prime ) | 
						
							| 5 |  | prmz |  |-  ( Q e. Prime -> Q e. ZZ ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> Q e. ZZ ) | 
						
							| 7 |  | lgsval3 |  |-  ( ( Q e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( Q /L P ) = ( ( ( ( Q ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) | 
						
							| 8 | 6 1 7 | syl2anc |  |-  ( ph -> ( Q /L P ) = ( ( ( ( Q ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) | 
						
							| 9 | 2 | gausslemma2dlem0a |  |-  ( ph -> Q e. NN ) | 
						
							| 10 |  | oddprm |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 11 | 1 10 | syl |  |-  ( ph -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 12 | 11 | nnnn0d |  |-  ( ph -> ( ( P - 1 ) / 2 ) e. NN0 ) | 
						
							| 13 | 9 12 | nnexpcld |  |-  ( ph -> ( Q ^ ( ( P - 1 ) / 2 ) ) e. NN ) | 
						
							| 14 | 13 | nnred |  |-  ( ph -> ( Q ^ ( ( P - 1 ) / 2 ) ) e. RR ) | 
						
							| 15 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 16 | 15 | a1i |  |-  ( ph -> -u 1 e. RR ) | 
						
							| 17 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 18 | 17 | a1i |  |-  ( ph -> -u 1 =/= 0 ) | 
						
							| 19 |  | fzfid |  |-  ( ph -> ( 1 ... ( ( P - 1 ) / 2 ) ) e. Fin ) | 
						
							| 20 | 9 | nnred |  |-  ( ph -> Q e. RR ) | 
						
							| 21 | 1 | gausslemma2dlem0a |  |-  ( ph -> P e. NN ) | 
						
							| 22 | 20 21 | nndivred |  |-  ( ph -> ( Q / P ) e. RR ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( Q / P ) e. RR ) | 
						
							| 24 |  | 2re |  |-  2 e. RR | 
						
							| 25 |  | elfznn |  |-  ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) -> x e. NN ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> x e. NN ) | 
						
							| 27 | 26 | nnred |  |-  ( ( ph /\ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> x e. RR ) | 
						
							| 28 |  | remulcl |  |-  ( ( 2 e. RR /\ x e. RR ) -> ( 2 x. x ) e. RR ) | 
						
							| 29 | 24 27 28 | sylancr |  |-  ( ( ph /\ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( 2 x. x ) e. RR ) | 
						
							| 30 | 23 29 | remulcld |  |-  ( ( ph /\ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( ( Q / P ) x. ( 2 x. x ) ) e. RR ) | 
						
							| 31 | 30 | flcld |  |-  ( ( ph /\ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) e. ZZ ) | 
						
							| 32 | 19 31 | fsumzcl |  |-  ( ph -> sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) e. ZZ ) | 
						
							| 33 | 16 18 32 | reexpclzd |  |-  ( ph -> ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) e. RR ) | 
						
							| 34 |  | 1re |  |-  1 e. RR | 
						
							| 35 | 34 | a1i |  |-  ( ph -> 1 e. RR ) | 
						
							| 36 | 21 | nnrpd |  |-  ( ph -> P e. RR+ ) | 
						
							| 37 |  | eqid |  |-  ( ( Q x. ( 2 x. x ) ) mod P ) = ( ( Q x. ( 2 x. x ) ) mod P ) | 
						
							| 38 |  | eqid |  |-  ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( ( ( ( -u 1 ^ ( ( Q x. ( 2 x. x ) ) mod P ) ) x. ( ( Q x. ( 2 x. x ) ) mod P ) ) mod P ) / 2 ) ) = ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( ( ( ( -u 1 ^ ( ( Q x. ( 2 x. x ) ) mod P ) ) x. ( ( Q x. ( 2 x. x ) ) mod P ) ) mod P ) / 2 ) ) | 
						
							| 39 |  | eqid |  |-  ( ( Q x. ( 2 x. y ) ) mod P ) = ( ( Q x. ( 2 x. y ) ) mod P ) | 
						
							| 40 |  | eqid |  |-  ( Z/nZ ` P ) = ( Z/nZ ` P ) | 
						
							| 41 |  | eqid |  |-  ( mulGrp ` ( Z/nZ ` P ) ) = ( mulGrp ` ( Z/nZ ` P ) ) | 
						
							| 42 |  | eqid |  |-  ( ZRHom ` ( Z/nZ ` P ) ) = ( ZRHom ` ( Z/nZ ` P ) ) | 
						
							| 43 | 1 2 3 37 38 39 40 41 42 | lgseisenlem4 |  |-  ( ph -> ( ( Q ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) mod P ) ) | 
						
							| 44 |  | modadd1 |  |-  ( ( ( ( Q ^ ( ( P - 1 ) / 2 ) ) e. RR /\ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) e. RR ) /\ ( 1 e. RR /\ P e. RR+ ) /\ ( ( Q ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) mod P ) ) -> ( ( ( Q ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) mod P ) ) | 
						
							| 45 | 14 33 35 36 43 44 | syl221anc |  |-  ( ph -> ( ( ( Q ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) mod P ) ) | 
						
							| 46 |  | peano2re |  |-  ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) e. RR -> ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) e. RR ) | 
						
							| 47 | 33 46 | syl |  |-  ( ph -> ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) e. RR ) | 
						
							| 48 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 49 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 50 |  | absexpz |  |-  ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) e. ZZ ) -> ( abs ` ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) = ( ( abs ` -u 1 ) ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) | 
						
							| 51 | 49 17 32 50 | mp3an12i |  |-  ( ph -> ( abs ` ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) = ( ( abs ` -u 1 ) ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) | 
						
							| 52 |  | ax-1cn |  |-  1 e. CC | 
						
							| 53 | 52 | absnegi |  |-  ( abs ` -u 1 ) = ( abs ` 1 ) | 
						
							| 54 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 55 | 53 54 | eqtri |  |-  ( abs ` -u 1 ) = 1 | 
						
							| 56 | 55 | oveq1i |  |-  ( ( abs ` -u 1 ) ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) = ( 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) | 
						
							| 57 |  | 1exp |  |-  ( sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) e. ZZ -> ( 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) = 1 ) | 
						
							| 58 | 32 57 | syl |  |-  ( ph -> ( 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) = 1 ) | 
						
							| 59 | 56 58 | eqtrid |  |-  ( ph -> ( ( abs ` -u 1 ) ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) = 1 ) | 
						
							| 60 | 51 59 | eqtrd |  |-  ( ph -> ( abs ` ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) = 1 ) | 
						
							| 61 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 62 | 60 61 | eqbrtrdi |  |-  ( ph -> ( abs ` ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) <_ 1 ) | 
						
							| 63 |  | absle |  |-  ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) e. RR /\ 1 e. RR ) -> ( ( abs ` ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) <_ 1 <-> ( -u 1 <_ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) /\ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) <_ 1 ) ) ) | 
						
							| 64 | 33 34 63 | sylancl |  |-  ( ph -> ( ( abs ` ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) <_ 1 <-> ( -u 1 <_ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) /\ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) <_ 1 ) ) ) | 
						
							| 65 | 62 64 | mpbid |  |-  ( ph -> ( -u 1 <_ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) /\ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) <_ 1 ) ) | 
						
							| 66 | 65 | simpld |  |-  ( ph -> -u 1 <_ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) | 
						
							| 67 | 48 66 | eqbrtrrid |  |-  ( ph -> ( 0 - 1 ) <_ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) | 
						
							| 68 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 69 | 68 35 33 | lesubaddd |  |-  ( ph -> ( ( 0 - 1 ) <_ ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) <-> 0 <_ ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) ) ) | 
						
							| 70 | 67 69 | mpbid |  |-  ( ph -> 0 <_ ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) ) | 
						
							| 71 | 21 | nnred |  |-  ( ph -> P e. RR ) | 
						
							| 72 |  | peano2rem |  |-  ( P e. RR -> ( P - 1 ) e. RR ) | 
						
							| 73 | 71 72 | syl |  |-  ( ph -> ( P - 1 ) e. RR ) | 
						
							| 74 | 65 | simprd |  |-  ( ph -> ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) <_ 1 ) | 
						
							| 75 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 76 | 24 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 77 | 1 | eldifad |  |-  ( ph -> P e. Prime ) | 
						
							| 78 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 79 |  | eluzle |  |-  ( P e. ( ZZ>= ` 2 ) -> 2 <_ P ) | 
						
							| 80 | 77 78 79 | 3syl |  |-  ( ph -> 2 <_ P ) | 
						
							| 81 |  | eldifsni |  |-  ( P e. ( Prime \ { 2 } ) -> P =/= 2 ) | 
						
							| 82 | 1 81 | syl |  |-  ( ph -> P =/= 2 ) | 
						
							| 83 | 76 71 80 82 | leneltd |  |-  ( ph -> 2 < P ) | 
						
							| 84 | 75 83 | eqbrtrrid |  |-  ( ph -> ( 1 + 1 ) < P ) | 
						
							| 85 | 35 35 71 | ltaddsubd |  |-  ( ph -> ( ( 1 + 1 ) < P <-> 1 < ( P - 1 ) ) ) | 
						
							| 86 | 84 85 | mpbid |  |-  ( ph -> 1 < ( P - 1 ) ) | 
						
							| 87 | 33 35 73 74 86 | lelttrd |  |-  ( ph -> ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) < ( P - 1 ) ) | 
						
							| 88 | 33 35 71 | ltaddsubd |  |-  ( ph -> ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) < P <-> ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) < ( P - 1 ) ) ) | 
						
							| 89 | 87 88 | mpbird |  |-  ( ph -> ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) < P ) | 
						
							| 90 |  | modid |  |-  ( ( ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) e. RR /\ P e. RR+ ) /\ ( 0 <_ ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) /\ ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) < P ) ) -> ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) mod P ) = ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) ) | 
						
							| 91 | 47 36 70 89 90 | syl22anc |  |-  ( ph -> ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) mod P ) = ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) ) | 
						
							| 92 | 45 91 | eqtrd |  |-  ( ph -> ( ( ( Q ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) ) | 
						
							| 93 | 92 | oveq1d |  |-  ( ph -> ( ( ( ( Q ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) - 1 ) ) | 
						
							| 94 | 33 | recnd |  |-  ( ph -> ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) e. CC ) | 
						
							| 95 |  | pncan |  |-  ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) e. CC /\ 1 e. CC ) -> ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) - 1 ) = ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) | 
						
							| 96 | 94 52 95 | sylancl |  |-  ( ph -> ( ( ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) + 1 ) - 1 ) = ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) | 
						
							| 97 | 93 96 | eqtrd |  |-  ( ph -> ( ( ( ( Q ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) | 
						
							| 98 | 8 97 | eqtrd |  |-  ( ph -> ( Q /L P ) = ( -u 1 ^ sum_ x e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. x ) ) ) ) ) |