| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgseisen.1 |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
| 2 |
|
lgseisen.2 |
|- ( ph -> Q e. ( Prime \ { 2 } ) ) |
| 3 |
|
lgseisen.3 |
|- ( ph -> P =/= Q ) |
| 4 |
|
lgsquad.4 |
|- M = ( ( P - 1 ) / 2 ) |
| 5 |
|
lgsquad.5 |
|- N = ( ( Q - 1 ) / 2 ) |
| 6 |
|
lgsquad.6 |
|- S = { <. x , y >. | ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) } |
| 7 |
|
neg1cn |
|- -u 1 e. CC |
| 8 |
7
|
a1i |
|- ( ph -> -u 1 e. CC ) |
| 9 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 10 |
9
|
a1i |
|- ( ph -> -u 1 =/= 0 ) |
| 11 |
|
fzfid |
|- ( ph -> ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) e. Fin ) |
| 12 |
2
|
gausslemma2dlem0a |
|- ( ph -> Q e. NN ) |
| 13 |
12
|
nnred |
|- ( ph -> Q e. RR ) |
| 14 |
1
|
gausslemma2dlem0a |
|- ( ph -> P e. NN ) |
| 15 |
13 14
|
nndivred |
|- ( ph -> ( Q / P ) e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q / P ) e. RR ) |
| 17 |
|
2z |
|- 2 e. ZZ |
| 18 |
|
elfzelz |
|- ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) -> u e. ZZ ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> u e. ZZ ) |
| 20 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ u e. ZZ ) -> ( 2 x. u ) e. ZZ ) |
| 21 |
17 19 20
|
sylancr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. u ) e. ZZ ) |
| 22 |
21
|
zred |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. u ) e. RR ) |
| 23 |
16 22
|
remulcld |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q / P ) x. ( 2 x. u ) ) e. RR ) |
| 24 |
23
|
flcld |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ ) |
| 25 |
11 24
|
fsumzcl |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ ) |
| 26 |
8 10 25
|
expclzd |
|- ( ph -> ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. CC ) |
| 27 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
| 28 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 29 |
|
xpfi |
|- ( ( ( 1 ... M ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... M ) X. ( 1 ... N ) ) e. Fin ) |
| 30 |
27 28 29
|
syl2anc |
|- ( ph -> ( ( 1 ... M ) X. ( 1 ... N ) ) e. Fin ) |
| 31 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) } C_ ( ( 1 ... M ) X. ( 1 ... N ) ) |
| 32 |
6 31
|
eqsstri |
|- S C_ ( ( 1 ... M ) X. ( 1 ... N ) ) |
| 33 |
|
ssfi |
|- ( ( ( ( 1 ... M ) X. ( 1 ... N ) ) e. Fin /\ S C_ ( ( 1 ... M ) X. ( 1 ... N ) ) ) -> S e. Fin ) |
| 34 |
30 32 33
|
sylancl |
|- ( ph -> S e. Fin ) |
| 35 |
|
ssrab2 |
|- { z e. S | -. 2 || ( 1st ` z ) } C_ S |
| 36 |
|
ssfi |
|- ( ( S e. Fin /\ { z e. S | -. 2 || ( 1st ` z ) } C_ S ) -> { z e. S | -. 2 || ( 1st ` z ) } e. Fin ) |
| 37 |
34 35 36
|
sylancl |
|- ( ph -> { z e. S | -. 2 || ( 1st ` z ) } e. Fin ) |
| 38 |
|
hashcl |
|- ( { z e. S | -. 2 || ( 1st ` z ) } e. Fin -> ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) e. NN0 ) |
| 39 |
37 38
|
syl |
|- ( ph -> ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) e. NN0 ) |
| 40 |
|
expcl |
|- ( ( -u 1 e. CC /\ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) e. NN0 ) -> ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) e. CC ) |
| 41 |
7 39 40
|
sylancr |
|- ( ph -> ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) e. CC ) |
| 42 |
39
|
nn0zd |
|- ( ph -> ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) e. ZZ ) |
| 43 |
8 10 42
|
expne0d |
|- ( ph -> ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) =/= 0 ) |
| 44 |
41 43
|
recidd |
|- ( ph -> ( ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) x. ( 1 / ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) = 1 ) |
| 45 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 46 |
45
|
negeqi |
|- -u ( 1 / 1 ) = -u 1 |
| 47 |
|
ax-1cn |
|- 1 e. CC |
| 48 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 49 |
|
divneg2 |
|- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
| 50 |
47 47 48 49
|
mp3an |
|- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
| 51 |
46 50
|
eqtr3i |
|- -u 1 = ( 1 / -u 1 ) |
| 52 |
51
|
oveq1i |
|- ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( ( 1 / -u 1 ) ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) |
| 53 |
8 10 42
|
exprecd |
|- ( ph -> ( ( 1 / -u 1 ) ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( 1 / ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) |
| 54 |
52 53
|
eqtrid |
|- ( ph -> ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( 1 / ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) |
| 55 |
54
|
oveq2d |
|- ( ph -> ( ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) x. ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) x. ( 1 / ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) ) |
| 56 |
34
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> S e. Fin ) |
| 57 |
|
ssrab2 |
|- { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } C_ S |
| 58 |
|
ssfi |
|- ( ( S e. Fin /\ { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } C_ S ) -> { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } e. Fin ) |
| 59 |
56 57 58
|
sylancl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } e. Fin ) |
| 60 |
|
fveqeq2 |
|- ( z = v -> ( ( 1st ` z ) = ( P - ( 2 x. u ) ) <-> ( 1st ` v ) = ( P - ( 2 x. u ) ) ) ) |
| 61 |
60
|
elrab |
|- ( v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } <-> ( v e. S /\ ( 1st ` v ) = ( P - ( 2 x. u ) ) ) ) |
| 62 |
61
|
simprbi |
|- ( v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } -> ( 1st ` v ) = ( P - ( 2 x. u ) ) ) |
| 63 |
62
|
ad2antll |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> ( 1st ` v ) = ( P - ( 2 x. u ) ) ) |
| 64 |
63
|
oveq2d |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> ( P - ( 1st ` v ) ) = ( P - ( P - ( 2 x. u ) ) ) ) |
| 65 |
14
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. NN ) |
| 66 |
65
|
nncnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. CC ) |
| 67 |
66
|
adantrr |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> P e. CC ) |
| 68 |
21
|
zcnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. u ) e. CC ) |
| 69 |
68
|
adantrr |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> ( 2 x. u ) e. CC ) |
| 70 |
67 69
|
nncand |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> ( P - ( P - ( 2 x. u ) ) ) = ( 2 x. u ) ) |
| 71 |
64 70
|
eqtrd |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> ( P - ( 1st ` v ) ) = ( 2 x. u ) ) |
| 72 |
71
|
oveq1d |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> ( ( P - ( 1st ` v ) ) / 2 ) = ( ( 2 x. u ) / 2 ) ) |
| 73 |
19
|
zcnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> u e. CC ) |
| 74 |
73
|
adantrr |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> u e. CC ) |
| 75 |
|
2cnd |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> 2 e. CC ) |
| 76 |
|
2ne0 |
|- 2 =/= 0 |
| 77 |
76
|
a1i |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> 2 =/= 0 ) |
| 78 |
74 75 77
|
divcan3d |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> ( ( 2 x. u ) / 2 ) = u ) |
| 79 |
72 78
|
eqtrd |
|- ( ( ph /\ ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) -> ( ( P - ( 1st ` v ) ) / 2 ) = u ) |
| 80 |
79
|
ralrimivva |
|- ( ph -> A. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) A. v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ( ( P - ( 1st ` v ) ) / 2 ) = u ) |
| 81 |
|
invdisj |
|- ( A. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) A. v e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ( ( P - ( 1st ` v ) ) / 2 ) = u -> Disj_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) |
| 82 |
80 81
|
syl |
|- ( ph -> Disj_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) |
| 83 |
11 59 82
|
hashiun |
|- ( ph -> ( # ` U_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) = sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( # ` { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) |
| 84 |
|
iunrab |
|- U_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } = { z e. S | E. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 1st ` z ) = ( P - ( 2 x. u ) ) } |
| 85 |
|
eldifsni |
|- ( P e. ( Prime \ { 2 } ) -> P =/= 2 ) |
| 86 |
1 85
|
syl |
|- ( ph -> P =/= 2 ) |
| 87 |
86
|
necomd |
|- ( ph -> 2 =/= P ) |
| 88 |
87
|
neneqd |
|- ( ph -> -. 2 = P ) |
| 89 |
88
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> -. 2 = P ) |
| 90 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 91 |
17 90
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 92 |
1
|
eldifad |
|- ( ph -> P e. Prime ) |
| 93 |
92
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. Prime ) |
| 94 |
|
dvdsprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( 2 || P <-> 2 = P ) ) |
| 95 |
91 93 94
|
sylancr |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 || P <-> 2 = P ) ) |
| 96 |
89 95
|
mtbird |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> -. 2 || P ) |
| 97 |
14
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. NN ) |
| 98 |
97
|
nncnd |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. CC ) |
| 99 |
21
|
adantlr |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. u ) e. ZZ ) |
| 100 |
99
|
zcnd |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. u ) e. CC ) |
| 101 |
98 100
|
npcand |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - ( 2 x. u ) ) + ( 2 x. u ) ) = P ) |
| 102 |
101
|
breq2d |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 || ( ( P - ( 2 x. u ) ) + ( 2 x. u ) ) <-> 2 || P ) ) |
| 103 |
96 102
|
mtbird |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> -. 2 || ( ( P - ( 2 x. u ) ) + ( 2 x. u ) ) ) |
| 104 |
18
|
adantl |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> u e. ZZ ) |
| 105 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ u e. ZZ ) -> 2 || ( 2 x. u ) ) |
| 106 |
17 104 105
|
sylancr |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 2 || ( 2 x. u ) ) |
| 107 |
17
|
a1i |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 2 e. ZZ ) |
| 108 |
97
|
nnzd |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. ZZ ) |
| 109 |
108 99
|
zsubcld |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - ( 2 x. u ) ) e. ZZ ) |
| 110 |
|
dvds2add |
|- ( ( 2 e. ZZ /\ ( P - ( 2 x. u ) ) e. ZZ /\ ( 2 x. u ) e. ZZ ) -> ( ( 2 || ( P - ( 2 x. u ) ) /\ 2 || ( 2 x. u ) ) -> 2 || ( ( P - ( 2 x. u ) ) + ( 2 x. u ) ) ) ) |
| 111 |
107 109 99 110
|
syl3anc |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 || ( P - ( 2 x. u ) ) /\ 2 || ( 2 x. u ) ) -> 2 || ( ( P - ( 2 x. u ) ) + ( 2 x. u ) ) ) ) |
| 112 |
106 111
|
mpan2d |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 || ( P - ( 2 x. u ) ) -> 2 || ( ( P - ( 2 x. u ) ) + ( 2 x. u ) ) ) ) |
| 113 |
103 112
|
mtod |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> -. 2 || ( P - ( 2 x. u ) ) ) |
| 114 |
|
breq2 |
|- ( ( 1st ` z ) = ( P - ( 2 x. u ) ) -> ( 2 || ( 1st ` z ) <-> 2 || ( P - ( 2 x. u ) ) ) ) |
| 115 |
114
|
notbid |
|- ( ( 1st ` z ) = ( P - ( 2 x. u ) ) -> ( -. 2 || ( 1st ` z ) <-> -. 2 || ( P - ( 2 x. u ) ) ) ) |
| 116 |
113 115
|
syl5ibrcom |
|- ( ( ( ph /\ z e. S ) /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 1st ` z ) = ( P - ( 2 x. u ) ) -> -. 2 || ( 1st ` z ) ) ) |
| 117 |
116
|
rexlimdva |
|- ( ( ph /\ z e. S ) -> ( E. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 1st ` z ) = ( P - ( 2 x. u ) ) -> -. 2 || ( 1st ` z ) ) ) |
| 118 |
|
simpr |
|- ( ( ph /\ z e. S ) -> z e. S ) |
| 119 |
32 118
|
sselid |
|- ( ( ph /\ z e. S ) -> z e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) |
| 120 |
|
xp1st |
|- ( z e. ( ( 1 ... M ) X. ( 1 ... N ) ) -> ( 1st ` z ) e. ( 1 ... M ) ) |
| 121 |
119 120
|
syl |
|- ( ( ph /\ z e. S ) -> ( 1st ` z ) e. ( 1 ... M ) ) |
| 122 |
|
elfzelz |
|- ( ( 1st ` z ) e. ( 1 ... M ) -> ( 1st ` z ) e. ZZ ) |
| 123 |
|
odd2np1 |
|- ( ( 1st ` z ) e. ZZ -> ( -. 2 || ( 1st ` z ) <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) |
| 124 |
121 122 123
|
3syl |
|- ( ( ph /\ z e. S ) -> ( -. 2 || ( 1st ` z ) <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) |
| 125 |
1 4
|
gausslemma2dlem0b |
|- ( ph -> M e. NN ) |
| 126 |
125
|
nnred |
|- ( ph -> M e. RR ) |
| 127 |
126
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> M e. RR ) |
| 128 |
127
|
rehalfcld |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( M / 2 ) e. RR ) |
| 129 |
128
|
flcld |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( |_ ` ( M / 2 ) ) e. ZZ ) |
| 130 |
129
|
peano2zd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( |_ ` ( M / 2 ) ) + 1 ) e. ZZ ) |
| 131 |
125
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> M e. NN ) |
| 132 |
131
|
nnzd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> M e. ZZ ) |
| 133 |
|
simprl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> n e. ZZ ) |
| 134 |
132 133
|
zsubcld |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( M - n ) e. ZZ ) |
| 135 |
|
reflcl |
|- ( ( M / 2 ) e. RR -> ( |_ ` ( M / 2 ) ) e. RR ) |
| 136 |
128 135
|
syl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( |_ ` ( M / 2 ) ) e. RR ) |
| 137 |
134
|
zred |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( M - n ) e. RR ) |
| 138 |
|
flle |
|- ( ( M / 2 ) e. RR -> ( |_ ` ( M / 2 ) ) <_ ( M / 2 ) ) |
| 139 |
128 138
|
syl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( |_ ` ( M / 2 ) ) <_ ( M / 2 ) ) |
| 140 |
|
zre |
|- ( n e. ZZ -> n e. RR ) |
| 141 |
140
|
ad2antrl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> n e. RR ) |
| 142 |
|
simprr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) |
| 143 |
121
|
adantr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 1st ` z ) e. ( 1 ... M ) ) |
| 144 |
142 143
|
eqeltrd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( 2 x. n ) + 1 ) e. ( 1 ... M ) ) |
| 145 |
|
elfzle2 |
|- ( ( ( 2 x. n ) + 1 ) e. ( 1 ... M ) -> ( ( 2 x. n ) + 1 ) <_ M ) |
| 146 |
144 145
|
syl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( 2 x. n ) + 1 ) <_ M ) |
| 147 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) |
| 148 |
17 133 147
|
sylancr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 2 x. n ) e. ZZ ) |
| 149 |
|
zltp1le |
|- ( ( ( 2 x. n ) e. ZZ /\ M e. ZZ ) -> ( ( 2 x. n ) < M <-> ( ( 2 x. n ) + 1 ) <_ M ) ) |
| 150 |
148 132 149
|
syl2anc |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( 2 x. n ) < M <-> ( ( 2 x. n ) + 1 ) <_ M ) ) |
| 151 |
146 150
|
mpbird |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 2 x. n ) < M ) |
| 152 |
|
2re |
|- 2 e. RR |
| 153 |
152
|
a1i |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> 2 e. RR ) |
| 154 |
|
2pos |
|- 0 < 2 |
| 155 |
154
|
a1i |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> 0 < 2 ) |
| 156 |
|
ltmuldiv2 |
|- ( ( n e. RR /\ M e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. n ) < M <-> n < ( M / 2 ) ) ) |
| 157 |
141 127 153 155 156
|
syl112anc |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( 2 x. n ) < M <-> n < ( M / 2 ) ) ) |
| 158 |
151 157
|
mpbid |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> n < ( M / 2 ) ) |
| 159 |
128
|
recnd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( M / 2 ) e. CC ) |
| 160 |
125
|
nncnd |
|- ( ph -> M e. CC ) |
| 161 |
160
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> M e. CC ) |
| 162 |
161
|
2halvesd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( M / 2 ) + ( M / 2 ) ) = M ) |
| 163 |
159 159 162
|
mvlraddd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( M / 2 ) = ( M - ( M / 2 ) ) ) |
| 164 |
158 163
|
breqtrd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> n < ( M - ( M / 2 ) ) ) |
| 165 |
141 127 128 164
|
ltsub13d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( M / 2 ) < ( M - n ) ) |
| 166 |
136 128 137 139 165
|
lelttrd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( |_ ` ( M / 2 ) ) < ( M - n ) ) |
| 167 |
|
zltp1le |
|- ( ( ( |_ ` ( M / 2 ) ) e. ZZ /\ ( M - n ) e. ZZ ) -> ( ( |_ ` ( M / 2 ) ) < ( M - n ) <-> ( ( |_ ` ( M / 2 ) ) + 1 ) <_ ( M - n ) ) ) |
| 168 |
129 134 167
|
syl2anc |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( |_ ` ( M / 2 ) ) < ( M - n ) <-> ( ( |_ ` ( M / 2 ) ) + 1 ) <_ ( M - n ) ) ) |
| 169 |
166 168
|
mpbid |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( |_ ` ( M / 2 ) ) + 1 ) <_ ( M - n ) ) |
| 170 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
| 171 |
|
2cn |
|- 2 e. CC |
| 172 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
| 173 |
172
|
ad2antrl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> n e. CC ) |
| 174 |
|
mulcl |
|- ( ( 2 e. CC /\ n e. CC ) -> ( 2 x. n ) e. CC ) |
| 175 |
171 173 174
|
sylancr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 2 x. n ) e. CC ) |
| 176 |
|
pncan |
|- ( ( ( 2 x. n ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
| 177 |
175 47 176
|
sylancl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
| 178 |
|
elfznn |
|- ( ( ( 2 x. n ) + 1 ) e. ( 1 ... M ) -> ( ( 2 x. n ) + 1 ) e. NN ) |
| 179 |
|
nnm1nn0 |
|- ( ( ( 2 x. n ) + 1 ) e. NN -> ( ( ( 2 x. n ) + 1 ) - 1 ) e. NN0 ) |
| 180 |
144 178 179
|
3syl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) e. NN0 ) |
| 181 |
177 180
|
eqeltrrd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 2 x. n ) e. NN0 ) |
| 182 |
181
|
nn0ge0d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> 0 <_ ( 2 x. n ) ) |
| 183 |
170 182
|
eqbrtrid |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 2 x. 0 ) <_ ( 2 x. n ) ) |
| 184 |
|
0red |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> 0 e. RR ) |
| 185 |
|
lemul2 |
|- ( ( 0 e. RR /\ n e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 0 <_ n <-> ( 2 x. 0 ) <_ ( 2 x. n ) ) ) |
| 186 |
184 141 153 155 185
|
syl112anc |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 0 <_ n <-> ( 2 x. 0 ) <_ ( 2 x. n ) ) ) |
| 187 |
183 186
|
mpbird |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> 0 <_ n ) |
| 188 |
127 141
|
subge02d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 0 <_ n <-> ( M - n ) <_ M ) ) |
| 189 |
187 188
|
mpbid |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( M - n ) <_ M ) |
| 190 |
130 132 134 169 189
|
elfzd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( M - n ) e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) |
| 191 |
92
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> P e. Prime ) |
| 192 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 193 |
191 192
|
syl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> P e. NN ) |
| 194 |
193
|
nncnd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> P e. CC ) |
| 195 |
|
peano2cn |
|- ( ( 2 x. n ) e. CC -> ( ( 2 x. n ) + 1 ) e. CC ) |
| 196 |
175 195
|
syl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( 2 x. n ) + 1 ) e. CC ) |
| 197 |
194 196
|
nncand |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( P - ( P - ( ( 2 x. n ) + 1 ) ) ) = ( ( 2 x. n ) + 1 ) ) |
| 198 |
|
1cnd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> 1 e. CC ) |
| 199 |
194 175 198
|
sub32d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( P - ( 2 x. n ) ) - 1 ) = ( ( P - 1 ) - ( 2 x. n ) ) ) |
| 200 |
194 175 198
|
subsub4d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( P - ( 2 x. n ) ) - 1 ) = ( P - ( ( 2 x. n ) + 1 ) ) ) |
| 201 |
|
2cnd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> 2 e. CC ) |
| 202 |
201 161 173
|
subdid |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 2 x. ( M - n ) ) = ( ( 2 x. M ) - ( 2 x. n ) ) ) |
| 203 |
4
|
oveq2i |
|- ( 2 x. M ) = ( 2 x. ( ( P - 1 ) / 2 ) ) |
| 204 |
14
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 205 |
204
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> P e. ZZ ) |
| 206 |
|
peano2zm |
|- ( P e. ZZ -> ( P - 1 ) e. ZZ ) |
| 207 |
205 206
|
syl |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( P - 1 ) e. ZZ ) |
| 208 |
207
|
zcnd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( P - 1 ) e. CC ) |
| 209 |
76
|
a1i |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> 2 =/= 0 ) |
| 210 |
208 201 209
|
divcan2d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 2 x. ( ( P - 1 ) / 2 ) ) = ( P - 1 ) ) |
| 211 |
203 210
|
eqtrid |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 2 x. M ) = ( P - 1 ) ) |
| 212 |
211
|
oveq1d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( 2 x. M ) - ( 2 x. n ) ) = ( ( P - 1 ) - ( 2 x. n ) ) ) |
| 213 |
202 212
|
eqtr2d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( ( P - 1 ) - ( 2 x. n ) ) = ( 2 x. ( M - n ) ) ) |
| 214 |
199 200 213
|
3eqtr3d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( P - ( ( 2 x. n ) + 1 ) ) = ( 2 x. ( M - n ) ) ) |
| 215 |
214
|
oveq2d |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( P - ( P - ( ( 2 x. n ) + 1 ) ) ) = ( P - ( 2 x. ( M - n ) ) ) ) |
| 216 |
197 215 142
|
3eqtr3rd |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> ( 1st ` z ) = ( P - ( 2 x. ( M - n ) ) ) ) |
| 217 |
|
oveq2 |
|- ( u = ( M - n ) -> ( 2 x. u ) = ( 2 x. ( M - n ) ) ) |
| 218 |
217
|
oveq2d |
|- ( u = ( M - n ) -> ( P - ( 2 x. u ) ) = ( P - ( 2 x. ( M - n ) ) ) ) |
| 219 |
218
|
rspceeqv |
|- ( ( ( M - n ) e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) /\ ( 1st ` z ) = ( P - ( 2 x. ( M - n ) ) ) ) -> E. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 1st ` z ) = ( P - ( 2 x. u ) ) ) |
| 220 |
190 216 219
|
syl2anc |
|- ( ( ( ph /\ z e. S ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) ) ) -> E. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 1st ` z ) = ( P - ( 2 x. u ) ) ) |
| 221 |
220
|
rexlimdvaa |
|- ( ( ph /\ z e. S ) -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = ( 1st ` z ) -> E. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 1st ` z ) = ( P - ( 2 x. u ) ) ) ) |
| 222 |
124 221
|
sylbid |
|- ( ( ph /\ z e. S ) -> ( -. 2 || ( 1st ` z ) -> E. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 1st ` z ) = ( P - ( 2 x. u ) ) ) ) |
| 223 |
117 222
|
impbid |
|- ( ( ph /\ z e. S ) -> ( E. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 1st ` z ) = ( P - ( 2 x. u ) ) <-> -. 2 || ( 1st ` z ) ) ) |
| 224 |
223
|
rabbidva |
|- ( ph -> { z e. S | E. u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 1st ` z ) = ( P - ( 2 x. u ) ) } = { z e. S | -. 2 || ( 1st ` z ) } ) |
| 225 |
84 224
|
eqtrid |
|- ( ph -> U_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } = { z e. S | -. 2 || ( 1st ` z ) } ) |
| 226 |
225
|
fveq2d |
|- ( ph -> ( # ` U_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) = ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) |
| 227 |
6
|
relopabiv |
|- Rel S |
| 228 |
|
relss |
|- ( { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } C_ S -> ( Rel S -> Rel { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) ) |
| 229 |
57 227 228
|
mp2 |
|- Rel { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } |
| 230 |
|
relxp |
|- Rel ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) |
| 231 |
6
|
eleq2i |
|- ( <. x , y >. e. S <-> <. x , y >. e. { <. x , y >. | ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) } ) |
| 232 |
|
opabidw |
|- ( <. x , y >. e. { <. x , y >. | ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) } <-> ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) ) |
| 233 |
231 232
|
bitri |
|- ( <. x , y >. e. S <-> ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) ) |
| 234 |
|
anass |
|- ( ( ( y e. NN /\ y <_ N ) /\ ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) <-> ( y e. NN /\ ( y <_ N /\ ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) ) ) |
| 235 |
24
|
peano2zd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) e. ZZ ) |
| 236 |
235
|
zred |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) e. RR ) |
| 237 |
236
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) e. RR ) |
| 238 |
13
|
ad2antrr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> Q e. RR ) |
| 239 |
|
nnre |
|- ( y e. NN -> y e. RR ) |
| 240 |
239
|
adantl |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> y e. RR ) |
| 241 |
|
lesub |
|- ( ( ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) e. RR /\ Q e. RR /\ y e. RR ) -> ( ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) <_ ( Q - y ) <-> y <_ ( Q - ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) ) ) ) |
| 242 |
237 238 240 241
|
syl3anc |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) <_ ( Q - y ) <-> y <_ ( Q - ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) ) ) ) |
| 243 |
13
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> Q e. RR ) |
| 244 |
243
|
recnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> Q e. CC ) |
| 245 |
66 244
|
mulcomd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P x. Q ) = ( Q x. P ) ) |
| 246 |
68 244
|
mulcomd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. u ) x. Q ) = ( Q x. ( 2 x. u ) ) ) |
| 247 |
65
|
nnne0d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P =/= 0 ) |
| 248 |
244 66 247
|
divcan1d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q / P ) x. P ) = Q ) |
| 249 |
248
|
oveq1d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( ( Q / P ) x. P ) x. ( 2 x. u ) ) = ( Q x. ( 2 x. u ) ) ) |
| 250 |
16
|
recnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q / P ) e. CC ) |
| 251 |
250 66 68
|
mul32d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( ( Q / P ) x. P ) x. ( 2 x. u ) ) = ( ( ( Q / P ) x. ( 2 x. u ) ) x. P ) ) |
| 252 |
246 249 251
|
3eqtr2d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. u ) x. Q ) = ( ( ( Q / P ) x. ( 2 x. u ) ) x. P ) ) |
| 253 |
245 252
|
oveq12d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P x. Q ) - ( ( 2 x. u ) x. Q ) ) = ( ( Q x. P ) - ( ( ( Q / P ) x. ( 2 x. u ) ) x. P ) ) ) |
| 254 |
66 68 244
|
subdird |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - ( 2 x. u ) ) x. Q ) = ( ( P x. Q ) - ( ( 2 x. u ) x. Q ) ) ) |
| 255 |
23
|
recnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q / P ) x. ( 2 x. u ) ) e. CC ) |
| 256 |
244 255 66
|
subdird |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) x. P ) = ( ( Q x. P ) - ( ( ( Q / P ) x. ( 2 x. u ) ) x. P ) ) ) |
| 257 |
253 254 256
|
3eqtr4d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - ( 2 x. u ) ) x. Q ) = ( ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) x. P ) ) |
| 258 |
257
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( P - ( 2 x. u ) ) x. Q ) = ( ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) x. P ) ) |
| 259 |
258
|
breq2d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) <-> ( y x. P ) < ( ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) x. P ) ) ) |
| 260 |
23
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( Q / P ) x. ( 2 x. u ) ) e. RR ) |
| 261 |
238 260
|
resubcld |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) e. RR ) |
| 262 |
65
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> P e. NN ) |
| 263 |
262
|
nnred |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> P e. RR ) |
| 264 |
262
|
nngt0d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> 0 < P ) |
| 265 |
|
ltmul1 |
|- ( ( y e. RR /\ ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( y < ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) <-> ( y x. P ) < ( ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) x. P ) ) ) |
| 266 |
240 261 263 264 265
|
syl112anc |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( y < ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) <-> ( y x. P ) < ( ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) x. P ) ) ) |
| 267 |
|
ltsub13 |
|- ( ( y e. RR /\ Q e. RR /\ ( ( Q / P ) x. ( 2 x. u ) ) e. RR ) -> ( y < ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) <-> ( ( Q / P ) x. ( 2 x. u ) ) < ( Q - y ) ) ) |
| 268 |
240 238 260 267
|
syl3anc |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( y < ( Q - ( ( Q / P ) x. ( 2 x. u ) ) ) <-> ( ( Q / P ) x. ( 2 x. u ) ) < ( Q - y ) ) ) |
| 269 |
259 266 268
|
3bitr2d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) <-> ( ( Q / P ) x. ( 2 x. u ) ) < ( Q - y ) ) ) |
| 270 |
12
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> Q e. NN ) |
| 271 |
270
|
nnzd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> Q e. ZZ ) |
| 272 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
| 273 |
|
zsubcl |
|- ( ( Q e. ZZ /\ y e. ZZ ) -> ( Q - y ) e. ZZ ) |
| 274 |
271 272 273
|
syl2an |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( Q - y ) e. ZZ ) |
| 275 |
|
fllt |
|- ( ( ( ( Q / P ) x. ( 2 x. u ) ) e. RR /\ ( Q - y ) e. ZZ ) -> ( ( ( Q / P ) x. ( 2 x. u ) ) < ( Q - y ) <-> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < ( Q - y ) ) ) |
| 276 |
260 274 275
|
syl2anc |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( ( Q / P ) x. ( 2 x. u ) ) < ( Q - y ) <-> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < ( Q - y ) ) ) |
| 277 |
24
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ ) |
| 278 |
|
zltp1le |
|- ( ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ /\ ( Q - y ) e. ZZ ) -> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < ( Q - y ) <-> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) <_ ( Q - y ) ) ) |
| 279 |
277 274 278
|
syl2anc |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < ( Q - y ) <-> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) <_ ( Q - y ) ) ) |
| 280 |
269 276 279
|
3bitrd |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) <-> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) <_ ( Q - y ) ) ) |
| 281 |
5
|
oveq2i |
|- ( 2 x. N ) = ( 2 x. ( ( Q - 1 ) / 2 ) ) |
| 282 |
|
peano2rem |
|- ( Q e. RR -> ( Q - 1 ) e. RR ) |
| 283 |
243 282
|
syl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q - 1 ) e. RR ) |
| 284 |
283
|
recnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q - 1 ) e. CC ) |
| 285 |
|
2cnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 2 e. CC ) |
| 286 |
76
|
a1i |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 2 =/= 0 ) |
| 287 |
284 285 286
|
divcan2d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. ( ( Q - 1 ) / 2 ) ) = ( Q - 1 ) ) |
| 288 |
281 287
|
eqtrid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. N ) = ( Q - 1 ) ) |
| 289 |
288
|
oveq1d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( ( Q - 1 ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 290 |
|
1cnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 1 e. CC ) |
| 291 |
24
|
zcnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. CC ) |
| 292 |
244 290 291
|
sub32d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q - 1 ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( ( Q - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) - 1 ) ) |
| 293 |
244 291 290
|
subsub4d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) - 1 ) = ( Q - ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) ) ) |
| 294 |
289 292 293
|
3eqtrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( Q - ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) ) ) |
| 295 |
294
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( Q - ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) ) ) |
| 296 |
295
|
breq2d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <-> y <_ ( Q - ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + 1 ) ) ) ) |
| 297 |
242 280 296
|
3bitr4d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) <-> y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) |
| 298 |
297
|
anbi2d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( y <_ N /\ ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) <-> ( y <_ N /\ y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 299 |
|
2nn |
|- 2 e. NN |
| 300 |
2 5
|
gausslemma2dlem0b |
|- ( ph -> N e. NN ) |
| 301 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
| 302 |
299 300 301
|
sylancr |
|- ( ph -> ( 2 x. N ) e. NN ) |
| 303 |
302
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. N ) e. NN ) |
| 304 |
303
|
nnred |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. N ) e. RR ) |
| 305 |
300
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> N e. NN ) |
| 306 |
305
|
nnred |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> N e. RR ) |
| 307 |
24
|
zred |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. RR ) |
| 308 |
300
|
nncnd |
|- ( ph -> N e. CC ) |
| 309 |
308
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> N e. CC ) |
| 310 |
309
|
2timesd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. N ) = ( N + N ) ) |
| 311 |
309 309 310
|
mvrladdd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. N ) - N ) = N ) |
| 312 |
243
|
rehalfcld |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q / 2 ) e. RR ) |
| 313 |
243
|
ltm1d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q - 1 ) < Q ) |
| 314 |
152
|
a1i |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 2 e. RR ) |
| 315 |
154
|
a1i |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 0 < 2 ) |
| 316 |
|
ltdiv1 |
|- ( ( ( Q - 1 ) e. RR /\ Q e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( Q - 1 ) < Q <-> ( ( Q - 1 ) / 2 ) < ( Q / 2 ) ) ) |
| 317 |
283 243 314 315 316
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q - 1 ) < Q <-> ( ( Q - 1 ) / 2 ) < ( Q / 2 ) ) ) |
| 318 |
313 317
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q - 1 ) / 2 ) < ( Q / 2 ) ) |
| 319 |
5 318
|
eqbrtrid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> N < ( Q / 2 ) ) |
| 320 |
306 312 319
|
ltled |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> N <_ ( Q / 2 ) ) |
| 321 |
244 285 66 286
|
div32d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q / 2 ) x. P ) = ( Q x. ( P / 2 ) ) ) |
| 322 |
126
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> M e. RR ) |
| 323 |
322
|
rehalfcld |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( M / 2 ) e. RR ) |
| 324 |
|
peano2re |
|- ( ( |_ ` ( M / 2 ) ) e. RR -> ( ( |_ ` ( M / 2 ) ) + 1 ) e. RR ) |
| 325 |
323 135 324
|
3syl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( |_ ` ( M / 2 ) ) + 1 ) e. RR ) |
| 326 |
19
|
zred |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> u e. RR ) |
| 327 |
|
flltp1 |
|- ( ( M / 2 ) e. RR -> ( M / 2 ) < ( ( |_ ` ( M / 2 ) ) + 1 ) ) |
| 328 |
323 327
|
syl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( M / 2 ) < ( ( |_ ` ( M / 2 ) ) + 1 ) ) |
| 329 |
|
elfzle1 |
|- ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) -> ( ( |_ ` ( M / 2 ) ) + 1 ) <_ u ) |
| 330 |
329
|
adantl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( |_ ` ( M / 2 ) ) + 1 ) <_ u ) |
| 331 |
323 325 326 328 330
|
ltletrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( M / 2 ) < u ) |
| 332 |
|
ltdivmul |
|- ( ( M e. RR /\ u e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( M / 2 ) < u <-> M < ( 2 x. u ) ) ) |
| 333 |
322 326 314 315 332
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( M / 2 ) < u <-> M < ( 2 x. u ) ) ) |
| 334 |
331 333
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> M < ( 2 x. u ) ) |
| 335 |
4 334
|
eqbrtrrid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - 1 ) / 2 ) < ( 2 x. u ) ) |
| 336 |
65
|
nnred |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. RR ) |
| 337 |
|
peano2rem |
|- ( P e. RR -> ( P - 1 ) e. RR ) |
| 338 |
336 337
|
syl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - 1 ) e. RR ) |
| 339 |
|
ltdivmul |
|- ( ( ( P - 1 ) e. RR /\ ( 2 x. u ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( P - 1 ) / 2 ) < ( 2 x. u ) <-> ( P - 1 ) < ( 2 x. ( 2 x. u ) ) ) ) |
| 340 |
338 22 314 315 339
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( ( P - 1 ) / 2 ) < ( 2 x. u ) <-> ( P - 1 ) < ( 2 x. ( 2 x. u ) ) ) ) |
| 341 |
335 340
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - 1 ) < ( 2 x. ( 2 x. u ) ) ) |
| 342 |
204
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. ZZ ) |
| 343 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ ( 2 x. u ) e. ZZ ) -> ( 2 x. ( 2 x. u ) ) e. ZZ ) |
| 344 |
17 21 343
|
sylancr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. ( 2 x. u ) ) e. ZZ ) |
| 345 |
|
zlem1lt |
|- ( ( P e. ZZ /\ ( 2 x. ( 2 x. u ) ) e. ZZ ) -> ( P <_ ( 2 x. ( 2 x. u ) ) <-> ( P - 1 ) < ( 2 x. ( 2 x. u ) ) ) ) |
| 346 |
342 344 345
|
syl2anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P <_ ( 2 x. ( 2 x. u ) ) <-> ( P - 1 ) < ( 2 x. ( 2 x. u ) ) ) ) |
| 347 |
341 346
|
mpbird |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P <_ ( 2 x. ( 2 x. u ) ) ) |
| 348 |
|
ledivmul |
|- ( ( P e. RR /\ ( 2 x. u ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( P / 2 ) <_ ( 2 x. u ) <-> P <_ ( 2 x. ( 2 x. u ) ) ) ) |
| 349 |
336 22 314 315 348
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P / 2 ) <_ ( 2 x. u ) <-> P <_ ( 2 x. ( 2 x. u ) ) ) ) |
| 350 |
347 349
|
mpbird |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P / 2 ) <_ ( 2 x. u ) ) |
| 351 |
336
|
rehalfcld |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P / 2 ) e. RR ) |
| 352 |
270
|
nngt0d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 0 < Q ) |
| 353 |
|
lemul2 |
|- ( ( ( P / 2 ) e. RR /\ ( 2 x. u ) e. RR /\ ( Q e. RR /\ 0 < Q ) ) -> ( ( P / 2 ) <_ ( 2 x. u ) <-> ( Q x. ( P / 2 ) ) <_ ( Q x. ( 2 x. u ) ) ) ) |
| 354 |
351 22 243 352 353
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P / 2 ) <_ ( 2 x. u ) <-> ( Q x. ( P / 2 ) ) <_ ( Q x. ( 2 x. u ) ) ) ) |
| 355 |
350 354
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q x. ( P / 2 ) ) <_ ( Q x. ( 2 x. u ) ) ) |
| 356 |
321 355
|
eqbrtrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q / 2 ) x. P ) <_ ( Q x. ( 2 x. u ) ) ) |
| 357 |
243 22
|
remulcld |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q x. ( 2 x. u ) ) e. RR ) |
| 358 |
65
|
nngt0d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 0 < P ) |
| 359 |
|
lemuldiv |
|- ( ( ( Q / 2 ) e. RR /\ ( Q x. ( 2 x. u ) ) e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( Q / 2 ) x. P ) <_ ( Q x. ( 2 x. u ) ) <-> ( Q / 2 ) <_ ( ( Q x. ( 2 x. u ) ) / P ) ) ) |
| 360 |
312 357 336 358 359
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( ( Q / 2 ) x. P ) <_ ( Q x. ( 2 x. u ) ) <-> ( Q / 2 ) <_ ( ( Q x. ( 2 x. u ) ) / P ) ) ) |
| 361 |
356 360
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q / 2 ) <_ ( ( Q x. ( 2 x. u ) ) / P ) ) |
| 362 |
244 68 66 247
|
div23d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q x. ( 2 x. u ) ) / P ) = ( ( Q / P ) x. ( 2 x. u ) ) ) |
| 363 |
361 362
|
breqtrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q / 2 ) <_ ( ( Q / P ) x. ( 2 x. u ) ) ) |
| 364 |
306 312 23 320 363
|
letrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> N <_ ( ( Q / P ) x. ( 2 x. u ) ) ) |
| 365 |
300
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 366 |
365
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> N e. ZZ ) |
| 367 |
|
flge |
|- ( ( ( ( Q / P ) x. ( 2 x. u ) ) e. RR /\ N e. ZZ ) -> ( N <_ ( ( Q / P ) x. ( 2 x. u ) ) <-> N <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 368 |
23 366 367
|
syl2anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( N <_ ( ( Q / P ) x. ( 2 x. u ) ) <-> N <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 369 |
364 368
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> N <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) |
| 370 |
311 369
|
eqbrtrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. N ) - N ) <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) |
| 371 |
304 306 307 370
|
subled |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <_ N ) |
| 372 |
371
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <_ N ) |
| 373 |
303
|
nnzd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. N ) e. ZZ ) |
| 374 |
373 24
|
zsubcld |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. ZZ ) |
| 375 |
374
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. ZZ ) |
| 376 |
375
|
zred |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. RR ) |
| 377 |
300
|
ad2antrr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> N e. NN ) |
| 378 |
377
|
nnred |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> N e. RR ) |
| 379 |
|
letr |
|- ( ( y e. RR /\ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. RR /\ N e. RR ) -> ( ( y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) /\ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <_ N ) -> y <_ N ) ) |
| 380 |
240 376 378 379
|
syl3anc |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) /\ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <_ N ) -> y <_ N ) ) |
| 381 |
372 380
|
mpan2d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) -> y <_ N ) ) |
| 382 |
381
|
pm4.71rd |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <-> ( y <_ N /\ y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 383 |
298 382
|
bitr4d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ y e. NN ) -> ( ( y <_ N /\ ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) <-> y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) |
| 384 |
383
|
pm5.32da |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( y e. NN /\ ( y <_ N /\ ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) ) <-> ( y e. NN /\ y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 385 |
384
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( ( y e. NN /\ ( y <_ N /\ ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) ) <-> ( y e. NN /\ y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 386 |
234 385
|
bitrid |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( ( ( y e. NN /\ y <_ N ) /\ ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) <-> ( y e. NN /\ y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 387 |
|
simpr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> x = ( P - ( 2 x. u ) ) ) |
| 388 |
342 21
|
zsubcld |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - ( 2 x. u ) ) e. ZZ ) |
| 389 |
|
elfzle2 |
|- ( u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) -> u <_ M ) |
| 390 |
389
|
adantl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> u <_ M ) |
| 391 |
390 4
|
breqtrdi |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> u <_ ( ( P - 1 ) / 2 ) ) |
| 392 |
|
lemuldiv2 |
|- ( ( u e. RR /\ ( P - 1 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. u ) <_ ( P - 1 ) <-> u <_ ( ( P - 1 ) / 2 ) ) ) |
| 393 |
326 338 314 315 392
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. u ) <_ ( P - 1 ) <-> u <_ ( ( P - 1 ) / 2 ) ) ) |
| 394 |
391 393
|
mpbird |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. u ) <_ ( P - 1 ) ) |
| 395 |
336
|
ltm1d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - 1 ) < P ) |
| 396 |
22 338 336 394 395
|
lelttrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. u ) < P ) |
| 397 |
22 336
|
posdifd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. u ) < P <-> 0 < ( P - ( 2 x. u ) ) ) ) |
| 398 |
396 397
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> 0 < ( P - ( 2 x. u ) ) ) |
| 399 |
|
elnnz |
|- ( ( P - ( 2 x. u ) ) e. NN <-> ( ( P - ( 2 x. u ) ) e. ZZ /\ 0 < ( P - ( 2 x. u ) ) ) ) |
| 400 |
388 398 399
|
sylanbrc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - ( 2 x. u ) ) e. NN ) |
| 401 |
66 68 290
|
sub32d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - ( 2 x. u ) ) - 1 ) = ( ( P - 1 ) - ( 2 x. u ) ) ) |
| 402 |
4 4
|
oveq12i |
|- ( M + M ) = ( ( ( P - 1 ) / 2 ) + ( ( P - 1 ) / 2 ) ) |
| 403 |
65
|
nnzd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> P e. ZZ ) |
| 404 |
403 206
|
syl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - 1 ) e. ZZ ) |
| 405 |
404
|
zcnd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - 1 ) e. CC ) |
| 406 |
405
|
2halvesd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( ( P - 1 ) / 2 ) + ( ( P - 1 ) / 2 ) ) = ( P - 1 ) ) |
| 407 |
402 406
|
eqtrid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( M + M ) = ( P - 1 ) ) |
| 408 |
407
|
oveq1d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( M + M ) - M ) = ( ( P - 1 ) - M ) ) |
| 409 |
160
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> M e. CC ) |
| 410 |
409 409
|
pncan2d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( M + M ) - M ) = M ) |
| 411 |
408 410
|
eqtr3d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - 1 ) - M ) = M ) |
| 412 |
411 334
|
eqbrtrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - 1 ) - M ) < ( 2 x. u ) ) |
| 413 |
338 322 22 412
|
ltsub23d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - 1 ) - ( 2 x. u ) ) < M ) |
| 414 |
401 413
|
eqbrtrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - ( 2 x. u ) ) - 1 ) < M ) |
| 415 |
125
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> M e. NN ) |
| 416 |
415
|
nnzd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> M e. ZZ ) |
| 417 |
|
zlem1lt |
|- ( ( ( P - ( 2 x. u ) ) e. ZZ /\ M e. ZZ ) -> ( ( P - ( 2 x. u ) ) <_ M <-> ( ( P - ( 2 x. u ) ) - 1 ) < M ) ) |
| 418 |
388 416 417
|
syl2anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - ( 2 x. u ) ) <_ M <-> ( ( P - ( 2 x. u ) ) - 1 ) < M ) ) |
| 419 |
414 418
|
mpbird |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - ( 2 x. u ) ) <_ M ) |
| 420 |
|
fznn |
|- ( M e. ZZ -> ( ( P - ( 2 x. u ) ) e. ( 1 ... M ) <-> ( ( P - ( 2 x. u ) ) e. NN /\ ( P - ( 2 x. u ) ) <_ M ) ) ) |
| 421 |
416 420
|
syl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( P - ( 2 x. u ) ) e. ( 1 ... M ) <-> ( ( P - ( 2 x. u ) ) e. NN /\ ( P - ( 2 x. u ) ) <_ M ) ) ) |
| 422 |
400 419 421
|
mpbir2and |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( P - ( 2 x. u ) ) e. ( 1 ... M ) ) |
| 423 |
422
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( P - ( 2 x. u ) ) e. ( 1 ... M ) ) |
| 424 |
387 423
|
eqeltrd |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> x e. ( 1 ... M ) ) |
| 425 |
424
|
biantrurd |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( y e. ( 1 ... N ) <-> ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) ) ) |
| 426 |
365
|
ad2antrr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> N e. ZZ ) |
| 427 |
|
fznn |
|- ( N e. ZZ -> ( y e. ( 1 ... N ) <-> ( y e. NN /\ y <_ N ) ) ) |
| 428 |
426 427
|
syl |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( y e. ( 1 ... N ) <-> ( y e. NN /\ y <_ N ) ) ) |
| 429 |
425 428
|
bitr3d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) <-> ( y e. NN /\ y <_ N ) ) ) |
| 430 |
387
|
oveq1d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( x x. Q ) = ( ( P - ( 2 x. u ) ) x. Q ) ) |
| 431 |
430
|
breq2d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( ( y x. P ) < ( x x. Q ) <-> ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) ) |
| 432 |
429 431
|
anbi12d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) <-> ( ( y e. NN /\ y <_ N ) /\ ( y x. P ) < ( ( P - ( 2 x. u ) ) x. Q ) ) ) ) |
| 433 |
374
|
adantr |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. ZZ ) |
| 434 |
|
fznn |
|- ( ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. ZZ -> ( y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) <-> ( y e. NN /\ y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 435 |
433 434
|
syl |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) <-> ( y e. NN /\ y <_ ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 436 |
386 432 435
|
3bitr4d |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) <-> y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 437 |
233 436
|
bitrid |
|- ( ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) /\ x = ( P - ( 2 x. u ) ) ) -> ( <. x , y >. e. S <-> y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 438 |
437
|
pm5.32da |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( x = ( P - ( 2 x. u ) ) /\ <. x , y >. e. S ) <-> ( x = ( P - ( 2 x. u ) ) /\ y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) ) |
| 439 |
|
vex |
|- x e. _V |
| 440 |
|
vex |
|- y e. _V |
| 441 |
439 440
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
| 442 |
441
|
eqeq1d |
|- ( z = <. x , y >. -> ( ( 1st ` z ) = ( P - ( 2 x. u ) ) <-> x = ( P - ( 2 x. u ) ) ) ) |
| 443 |
442
|
elrab |
|- ( <. x , y >. e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } <-> ( <. x , y >. e. S /\ x = ( P - ( 2 x. u ) ) ) ) |
| 444 |
443
|
biancomi |
|- ( <. x , y >. e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } <-> ( x = ( P - ( 2 x. u ) ) /\ <. x , y >. e. S ) ) |
| 445 |
|
opelxp |
|- ( <. x , y >. e. ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) <-> ( x e. { ( P - ( 2 x. u ) ) } /\ y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 446 |
|
velsn |
|- ( x e. { ( P - ( 2 x. u ) ) } <-> x = ( P - ( 2 x. u ) ) ) |
| 447 |
446
|
anbi1i |
|- ( ( x e. { ( P - ( 2 x. u ) ) } /\ y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) <-> ( x = ( P - ( 2 x. u ) ) /\ y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 448 |
445 447
|
bitri |
|- ( <. x , y >. e. ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) <-> ( x = ( P - ( 2 x. u ) ) /\ y e. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 449 |
438 444 448
|
3bitr4g |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( <. x , y >. e. { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } <-> <. x , y >. e. ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) ) |
| 450 |
229 230 449
|
eqrelrdv |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } = ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 451 |
450
|
fveq2d |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( # ` { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) = ( # ` ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) ) |
| 452 |
|
fzfid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) e. Fin ) |
| 453 |
|
xpsnen2g |
|- ( ( ( P - ( 2 x. u ) ) e. ZZ /\ ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) e. Fin ) -> ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ~~ ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) |
| 454 |
388 452 453
|
syl2anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ~~ ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) |
| 455 |
|
hasheni |
|- ( ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ~~ ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) -> ( # ` ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) = ( # ` ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 456 |
454 455
|
syl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( # ` ( { ( P - ( 2 x. u ) ) } X. ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) = ( # ` ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) |
| 457 |
|
ltmul2 |
|- ( ( ( 2 x. u ) e. RR /\ P e. RR /\ ( Q e. RR /\ 0 < Q ) ) -> ( ( 2 x. u ) < P <-> ( Q x. ( 2 x. u ) ) < ( Q x. P ) ) ) |
| 458 |
22 336 243 352 457
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( 2 x. u ) < P <-> ( Q x. ( 2 x. u ) ) < ( Q x. P ) ) ) |
| 459 |
396 458
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( Q x. ( 2 x. u ) ) < ( Q x. P ) ) |
| 460 |
|
ltdivmul2 |
|- ( ( ( Q x. ( 2 x. u ) ) e. RR /\ Q e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( Q x. ( 2 x. u ) ) / P ) < Q <-> ( Q x. ( 2 x. u ) ) < ( Q x. P ) ) ) |
| 461 |
357 243 336 358 460
|
syl112anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( ( Q x. ( 2 x. u ) ) / P ) < Q <-> ( Q x. ( 2 x. u ) ) < ( Q x. P ) ) ) |
| 462 |
459 461
|
mpbird |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q x. ( 2 x. u ) ) / P ) < Q ) |
| 463 |
362 462
|
eqbrtrrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( Q / P ) x. ( 2 x. u ) ) < Q ) |
| 464 |
|
fllt |
|- ( ( ( ( Q / P ) x. ( 2 x. u ) ) e. RR /\ Q e. ZZ ) -> ( ( ( Q / P ) x. ( 2 x. u ) ) < Q <-> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < Q ) ) |
| 465 |
23 271 464
|
syl2anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( ( Q / P ) x. ( 2 x. u ) ) < Q <-> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < Q ) ) |
| 466 |
463 465
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < Q ) |
| 467 |
|
zltlem1 |
|- ( ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ /\ Q e. ZZ ) -> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < Q <-> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) <_ ( Q - 1 ) ) ) |
| 468 |
24 271 467
|
syl2anc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) < Q <-> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) <_ ( Q - 1 ) ) ) |
| 469 |
466 468
|
mpbid |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) <_ ( Q - 1 ) ) |
| 470 |
469 288
|
breqtrrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) <_ ( 2 x. N ) ) |
| 471 |
|
eluz2 |
|- ( ( 2 x. N ) e. ( ZZ>= ` ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <-> ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ /\ ( 2 x. N ) e. ZZ /\ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) <_ ( 2 x. N ) ) ) |
| 472 |
24 373 470 471
|
syl3anbrc |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. N ) e. ( ZZ>= ` ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 473 |
|
uznn0sub |
|- ( ( 2 x. N ) e. ( ZZ>= ` ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) -> ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. NN0 ) |
| 474 |
|
hashfz1 |
|- ( ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. NN0 -> ( # ` ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) = ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 475 |
472 473 474
|
3syl |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( # ` ( 1 ... ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) = ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 476 |
451 456 475
|
3eqtrd |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( # ` { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) = ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 477 |
476
|
sumeq2dv |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( # ` { z e. S | ( 1st ` z ) = ( P - ( 2 x. u ) ) } ) = sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 478 |
83 226 477
|
3eqtr3rd |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) |
| 479 |
302
|
nncnd |
|- ( ph -> ( 2 x. N ) e. CC ) |
| 480 |
479
|
adantr |
|- ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( 2 x. N ) e. CC ) |
| 481 |
11 480 291
|
fsumsub |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( ( 2 x. N ) - ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) - sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 482 |
478 481
|
eqtr3d |
|- ( ph -> ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) = ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) - sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) |
| 483 |
482
|
oveq2d |
|- ( ph -> ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) - sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) |
| 484 |
25
|
zcnd |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. CC ) |
| 485 |
11 373
|
fsumzcl |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) e. ZZ ) |
| 486 |
485
|
zcnd |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) e. CC ) |
| 487 |
484 486
|
pncan3d |
|- ( ph -> ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) - sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) = sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) ) |
| 488 |
|
fsumconst |
|- ( ( ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) e. Fin /\ ( 2 x. N ) e. CC ) -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) = ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. ( 2 x. N ) ) ) |
| 489 |
11 479 488
|
syl2anc |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) = ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. ( 2 x. N ) ) ) |
| 490 |
|
hashcl |
|- ( ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) e. Fin -> ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) e. NN0 ) |
| 491 |
11 490
|
syl |
|- ( ph -> ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) e. NN0 ) |
| 492 |
491
|
nn0cnd |
|- ( ph -> ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) e. CC ) |
| 493 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 494 |
492 493 308
|
mul12d |
|- ( ph -> ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. ( 2 x. N ) ) = ( 2 x. ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) ) |
| 495 |
489 494
|
eqtrd |
|- ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( 2 x. N ) = ( 2 x. ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) ) |
| 496 |
483 487 495
|
3eqtrd |
|- ( ph -> ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( 2 x. ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) ) |
| 497 |
496
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( -u 1 ^ ( 2 x. ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) ) ) |
| 498 |
17
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 499 |
491
|
nn0zd |
|- ( ph -> ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) e. ZZ ) |
| 500 |
499 365
|
zmulcld |
|- ( ph -> ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) e. ZZ ) |
| 501 |
|
expmulz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) e. ZZ ) ) -> ( -u 1 ^ ( 2 x. ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) ) |
| 502 |
8 10 498 500 501
|
syl22anc |
|- ( ph -> ( -u 1 ^ ( 2 x. ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) ) |
| 503 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
| 504 |
503
|
oveq1i |
|- ( ( -u 1 ^ 2 ) ^ ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) = ( 1 ^ ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) |
| 505 |
|
1exp |
|- ( ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) e. ZZ -> ( 1 ^ ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) = 1 ) |
| 506 |
500 505
|
syl |
|- ( ph -> ( 1 ^ ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) = 1 ) |
| 507 |
504 506
|
eqtrid |
|- ( ph -> ( ( -u 1 ^ 2 ) ^ ( ( # ` ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) x. N ) ) = 1 ) |
| 508 |
497 502 507
|
3eqtrd |
|- ( ph -> ( -u 1 ^ ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = 1 ) |
| 509 |
44 55 508
|
3eqtr4d |
|- ( ph -> ( ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) x. ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( -u 1 ^ ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) |
| 510 |
|
expaddz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ /\ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) e. ZZ ) ) -> ( -u 1 ^ ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) x. ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) |
| 511 |
8 10 25 42 510
|
syl22anc |
|- ( ph -> ( -u 1 ^ ( sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) x. ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) |
| 512 |
509 511
|
eqtr2d |
|- ( ph -> ( ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) x. ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) x. ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) |
| 513 |
26 41 41 43 512
|
mulcan2ad |
|- ( ph -> ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) |