| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgseisen.1 |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | lgseisen.2 |  |-  ( ph -> Q e. ( Prime \ { 2 } ) ) | 
						
							| 3 |  | lgseisen.3 |  |-  ( ph -> P =/= Q ) | 
						
							| 4 |  | lgsquad.4 |  |-  M = ( ( P - 1 ) / 2 ) | 
						
							| 5 |  | lgsquad.5 |  |-  N = ( ( Q - 1 ) / 2 ) | 
						
							| 6 |  | lgsquad.6 |  |-  S = { <. x , y >. | ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) } | 
						
							| 7 | 1 2 3 | lgseisen |  |-  ( ph -> ( Q /L P ) = ( -u 1 ^ sum_ u e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 8 | 4 | oveq2i |  |-  ( 1 ... M ) = ( 1 ... ( ( P - 1 ) / 2 ) ) | 
						
							| 9 | 8 | sumeq1i |  |-  sum_ u e. ( 1 ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) = sum_ u e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) | 
						
							| 10 | 1 4 | gausslemma2dlem0b |  |-  ( ph -> M e. NN ) | 
						
							| 11 | 10 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 12 | 11 | rehalfcld |  |-  ( ph -> ( M / 2 ) e. RR ) | 
						
							| 13 | 12 | flcld |  |-  ( ph -> ( |_ ` ( M / 2 ) ) e. ZZ ) | 
						
							| 14 | 13 | zred |  |-  ( ph -> ( |_ ` ( M / 2 ) ) e. RR ) | 
						
							| 15 | 14 | ltp1d |  |-  ( ph -> ( |_ ` ( M / 2 ) ) < ( ( |_ ` ( M / 2 ) ) + 1 ) ) | 
						
							| 16 |  | fzdisj |  |-  ( ( |_ ` ( M / 2 ) ) < ( ( |_ ` ( M / 2 ) ) + 1 ) -> ( ( 1 ... ( |_ ` ( M / 2 ) ) ) i^i ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) = (/) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( ( 1 ... ( |_ ` ( M / 2 ) ) ) i^i ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) = (/) ) | 
						
							| 18 | 10 | nnrpd |  |-  ( ph -> M e. RR+ ) | 
						
							| 19 | 18 | rphalfcld |  |-  ( ph -> ( M / 2 ) e. RR+ ) | 
						
							| 20 | 19 | rpge0d |  |-  ( ph -> 0 <_ ( M / 2 ) ) | 
						
							| 21 |  | flge0nn0 |  |-  ( ( ( M / 2 ) e. RR /\ 0 <_ ( M / 2 ) ) -> ( |_ ` ( M / 2 ) ) e. NN0 ) | 
						
							| 22 | 12 20 21 | syl2anc |  |-  ( ph -> ( |_ ` ( M / 2 ) ) e. NN0 ) | 
						
							| 23 | 10 | nnnn0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 24 |  | rphalflt |  |-  ( M e. RR+ -> ( M / 2 ) < M ) | 
						
							| 25 | 18 24 | syl |  |-  ( ph -> ( M / 2 ) < M ) | 
						
							| 26 | 10 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 27 |  | fllt |  |-  ( ( ( M / 2 ) e. RR /\ M e. ZZ ) -> ( ( M / 2 ) < M <-> ( |_ ` ( M / 2 ) ) < M ) ) | 
						
							| 28 | 12 26 27 | syl2anc |  |-  ( ph -> ( ( M / 2 ) < M <-> ( |_ ` ( M / 2 ) ) < M ) ) | 
						
							| 29 | 25 28 | mpbid |  |-  ( ph -> ( |_ ` ( M / 2 ) ) < M ) | 
						
							| 30 | 14 11 29 | ltled |  |-  ( ph -> ( |_ ` ( M / 2 ) ) <_ M ) | 
						
							| 31 |  | elfz2nn0 |  |-  ( ( |_ ` ( M / 2 ) ) e. ( 0 ... M ) <-> ( ( |_ ` ( M / 2 ) ) e. NN0 /\ M e. NN0 /\ ( |_ ` ( M / 2 ) ) <_ M ) ) | 
						
							| 32 | 22 23 30 31 | syl3anbrc |  |-  ( ph -> ( |_ ` ( M / 2 ) ) e. ( 0 ... M ) ) | 
						
							| 33 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 34 | 23 33 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 0 ) ) | 
						
							| 35 |  | elfzp12 |  |-  ( M e. ( ZZ>= ` 0 ) -> ( ( |_ ` ( M / 2 ) ) e. ( 0 ... M ) <-> ( ( |_ ` ( M / 2 ) ) = 0 \/ ( |_ ` ( M / 2 ) ) e. ( ( 0 + 1 ) ... M ) ) ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ph -> ( ( |_ ` ( M / 2 ) ) e. ( 0 ... M ) <-> ( ( |_ ` ( M / 2 ) ) = 0 \/ ( |_ ` ( M / 2 ) ) e. ( ( 0 + 1 ) ... M ) ) ) ) | 
						
							| 37 | 32 36 | mpbid |  |-  ( ph -> ( ( |_ ` ( M / 2 ) ) = 0 \/ ( |_ ` ( M / 2 ) ) e. ( ( 0 + 1 ) ... M ) ) ) | 
						
							| 38 |  | un0 |  |-  ( ( 1 ... M ) u. (/) ) = ( 1 ... M ) | 
						
							| 39 |  | uncom |  |-  ( ( 1 ... M ) u. (/) ) = ( (/) u. ( 1 ... M ) ) | 
						
							| 40 | 38 39 | eqtr3i |  |-  ( 1 ... M ) = ( (/) u. ( 1 ... M ) ) | 
						
							| 41 |  | oveq2 |  |-  ( ( |_ ` ( M / 2 ) ) = 0 -> ( 1 ... ( |_ ` ( M / 2 ) ) ) = ( 1 ... 0 ) ) | 
						
							| 42 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 43 | 41 42 | eqtrdi |  |-  ( ( |_ ` ( M / 2 ) ) = 0 -> ( 1 ... ( |_ ` ( M / 2 ) ) ) = (/) ) | 
						
							| 44 |  | oveq1 |  |-  ( ( |_ ` ( M / 2 ) ) = 0 -> ( ( |_ ` ( M / 2 ) ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 45 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 46 | 44 45 | eqtrdi |  |-  ( ( |_ ` ( M / 2 ) ) = 0 -> ( ( |_ ` ( M / 2 ) ) + 1 ) = 1 ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ( |_ ` ( M / 2 ) ) = 0 -> ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) = ( 1 ... M ) ) | 
						
							| 48 | 43 47 | uneq12d |  |-  ( ( |_ ` ( M / 2 ) ) = 0 -> ( ( 1 ... ( |_ ` ( M / 2 ) ) ) u. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) = ( (/) u. ( 1 ... M ) ) ) | 
						
							| 49 | 40 48 | eqtr4id |  |-  ( ( |_ ` ( M / 2 ) ) = 0 -> ( 1 ... M ) = ( ( 1 ... ( |_ ` ( M / 2 ) ) ) u. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) ) | 
						
							| 50 |  | fzsplit |  |-  ( ( |_ ` ( M / 2 ) ) e. ( 1 ... M ) -> ( 1 ... M ) = ( ( 1 ... ( |_ ` ( M / 2 ) ) ) u. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) ) | 
						
							| 51 | 45 | oveq1i |  |-  ( ( 0 + 1 ) ... M ) = ( 1 ... M ) | 
						
							| 52 | 50 51 | eleq2s |  |-  ( ( |_ ` ( M / 2 ) ) e. ( ( 0 + 1 ) ... M ) -> ( 1 ... M ) = ( ( 1 ... ( |_ ` ( M / 2 ) ) ) u. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) ) | 
						
							| 53 | 49 52 | jaoi |  |-  ( ( ( |_ ` ( M / 2 ) ) = 0 \/ ( |_ ` ( M / 2 ) ) e. ( ( 0 + 1 ) ... M ) ) -> ( 1 ... M ) = ( ( 1 ... ( |_ ` ( M / 2 ) ) ) u. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) ) | 
						
							| 54 | 37 53 | syl |  |-  ( ph -> ( 1 ... M ) = ( ( 1 ... ( |_ ` ( M / 2 ) ) ) u. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) ) | 
						
							| 55 |  | fzfid |  |-  ( ph -> ( 1 ... M ) e. Fin ) | 
						
							| 56 | 2 | gausslemma2dlem0a |  |-  ( ph -> Q e. NN ) | 
						
							| 57 | 56 | nnred |  |-  ( ph -> Q e. RR ) | 
						
							| 58 | 1 | gausslemma2dlem0a |  |-  ( ph -> P e. NN ) | 
						
							| 59 | 57 58 | nndivred |  |-  ( ph -> ( Q / P ) e. RR ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( Q / P ) e. RR ) | 
						
							| 61 |  | 2nn |  |-  2 e. NN | 
						
							| 62 |  | elfznn |  |-  ( u e. ( 1 ... M ) -> u e. NN ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> u e. NN ) | 
						
							| 64 |  | nnmulcl |  |-  ( ( 2 e. NN /\ u e. NN ) -> ( 2 x. u ) e. NN ) | 
						
							| 65 | 61 63 64 | sylancr |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( 2 x. u ) e. NN ) | 
						
							| 66 | 65 | nnred |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( 2 x. u ) e. RR ) | 
						
							| 67 | 60 66 | remulcld |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( ( Q / P ) x. ( 2 x. u ) ) e. RR ) | 
						
							| 68 | 56 | nnrpd |  |-  ( ph -> Q e. RR+ ) | 
						
							| 69 | 58 | nnrpd |  |-  ( ph -> P e. RR+ ) | 
						
							| 70 | 68 69 | rpdivcld |  |-  ( ph -> ( Q / P ) e. RR+ ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( Q / P ) e. RR+ ) | 
						
							| 72 | 65 | nnrpd |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( 2 x. u ) e. RR+ ) | 
						
							| 73 | 71 72 | rpmulcld |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( ( Q / P ) x. ( 2 x. u ) ) e. RR+ ) | 
						
							| 74 | 73 | rpge0d |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> 0 <_ ( ( Q / P ) x. ( 2 x. u ) ) ) | 
						
							| 75 |  | flge0nn0 |  |-  ( ( ( ( Q / P ) x. ( 2 x. u ) ) e. RR /\ 0 <_ ( ( Q / P ) x. ( 2 x. u ) ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. NN0 ) | 
						
							| 76 | 67 74 75 | syl2anc |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. NN0 ) | 
						
							| 77 | 76 | nn0cnd |  |-  ( ( ph /\ u e. ( 1 ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. CC ) | 
						
							| 78 | 17 54 55 77 | fsumsplit |  |-  ( ph -> sum_ u e. ( 1 ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) = ( sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 79 | 9 78 | eqtr3id |  |-  ( ph -> sum_ u e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) = ( sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 80 | 79 | oveq2d |  |-  ( ph -> ( -u 1 ^ sum_ u e. ( 1 ... ( ( P - 1 ) / 2 ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( -u 1 ^ ( sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 81 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 82 | 81 | a1i |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 83 |  | fzfid |  |-  ( ph -> ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) e. Fin ) | 
						
							| 84 |  | ssun2 |  |-  ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) C_ ( ( 1 ... ( |_ ` ( M / 2 ) ) ) u. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) | 
						
							| 85 | 84 54 | sseqtrrid |  |-  ( ph -> ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) C_ ( 1 ... M ) ) | 
						
							| 86 | 85 | sselda |  |-  ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> u e. ( 1 ... M ) ) | 
						
							| 87 | 86 76 | syldan |  |-  ( ( ph /\ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. NN0 ) | 
						
							| 88 | 83 87 | fsumnn0cl |  |-  ( ph -> sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. NN0 ) | 
						
							| 89 |  | fzfid |  |-  ( ph -> ( 1 ... ( |_ ` ( M / 2 ) ) ) e. Fin ) | 
						
							| 90 |  | ssun1 |  |-  ( 1 ... ( |_ ` ( M / 2 ) ) ) C_ ( ( 1 ... ( |_ ` ( M / 2 ) ) ) u. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ) | 
						
							| 91 | 90 54 | sseqtrrid |  |-  ( ph -> ( 1 ... ( |_ ` ( M / 2 ) ) ) C_ ( 1 ... M ) ) | 
						
							| 92 | 91 | sselda |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> u e. ( 1 ... M ) ) | 
						
							| 93 | 92 76 | syldan |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. NN0 ) | 
						
							| 94 | 89 93 | fsumnn0cl |  |-  ( ph -> sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. NN0 ) | 
						
							| 95 | 82 88 94 | expaddd |  |-  ( ph -> ( -u 1 ^ ( sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) = ( ( -u 1 ^ sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) x. ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 96 |  | fzfid |  |-  ( ph -> ( 1 ... N ) e. Fin ) | 
						
							| 97 |  | xpfi |  |-  ( ( ( 1 ... M ) e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... M ) X. ( 1 ... N ) ) e. Fin ) | 
						
							| 98 | 55 96 97 | syl2anc |  |-  ( ph -> ( ( 1 ... M ) X. ( 1 ... N ) ) e. Fin ) | 
						
							| 99 |  | opabssxp |  |-  { <. x , y >. | ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) } C_ ( ( 1 ... M ) X. ( 1 ... N ) ) | 
						
							| 100 | 6 99 | eqsstri |  |-  S C_ ( ( 1 ... M ) X. ( 1 ... N ) ) | 
						
							| 101 |  | ssfi |  |-  ( ( ( ( 1 ... M ) X. ( 1 ... N ) ) e. Fin /\ S C_ ( ( 1 ... M ) X. ( 1 ... N ) ) ) -> S e. Fin ) | 
						
							| 102 | 98 100 101 | sylancl |  |-  ( ph -> S e. Fin ) | 
						
							| 103 |  | ssrab2 |  |-  { z e. S | -. 2 || ( 1st ` z ) } C_ S | 
						
							| 104 |  | ssfi |  |-  ( ( S e. Fin /\ { z e. S | -. 2 || ( 1st ` z ) } C_ S ) -> { z e. S | -. 2 || ( 1st ` z ) } e. Fin ) | 
						
							| 105 | 102 103 104 | sylancl |  |-  ( ph -> { z e. S | -. 2 || ( 1st ` z ) } e. Fin ) | 
						
							| 106 |  | hashcl |  |-  ( { z e. S | -. 2 || ( 1st ` z ) } e. Fin -> ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) e. NN0 ) | 
						
							| 107 | 105 106 | syl |  |-  ( ph -> ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) e. NN0 ) | 
						
							| 108 |  | ssrab2 |  |-  { z e. S | 2 || ( 1st ` z ) } C_ S | 
						
							| 109 |  | ssfi |  |-  ( ( S e. Fin /\ { z e. S | 2 || ( 1st ` z ) } C_ S ) -> { z e. S | 2 || ( 1st ` z ) } e. Fin ) | 
						
							| 110 | 102 108 109 | sylancl |  |-  ( ph -> { z e. S | 2 || ( 1st ` z ) } e. Fin ) | 
						
							| 111 |  | hashcl |  |-  ( { z e. S | 2 || ( 1st ` z ) } e. Fin -> ( # ` { z e. S | 2 || ( 1st ` z ) } ) e. NN0 ) | 
						
							| 112 | 110 111 | syl |  |-  ( ph -> ( # ` { z e. S | 2 || ( 1st ` z ) } ) e. NN0 ) | 
						
							| 113 | 82 107 112 | expaddd |  |-  ( ph -> ( -u 1 ^ ( ( # ` { z e. S | 2 || ( 1st ` z ) } ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( ( -u 1 ^ ( # ` { z e. S | 2 || ( 1st ` z ) } ) ) x. ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) | 
						
							| 114 | 92 65 | syldan |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( 2 x. u ) e. NN ) | 
						
							| 115 |  | fzfid |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. Fin ) | 
						
							| 116 |  | xpsnen2g |  |-  ( ( ( 2 x. u ) e. NN /\ ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) e. Fin ) -> ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ~~ ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 117 | 114 115 116 | syl2anc |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ~~ ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 118 |  | hasheni |  |-  ( ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ~~ ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) -> ( # ` ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) = ( # ` ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 119 | 117 118 | syl |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( # ` ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) = ( # ` ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 120 |  | ssrab2 |  |-  { z e. S | ( 2 x. u ) = ( 1st ` z ) } C_ S | 
						
							| 121 | 6 | relopabiv |  |-  Rel S | 
						
							| 122 |  | relss |  |-  ( { z e. S | ( 2 x. u ) = ( 1st ` z ) } C_ S -> ( Rel S -> Rel { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) | 
						
							| 123 | 120 121 122 | mp2 |  |-  Rel { z e. S | ( 2 x. u ) = ( 1st ` z ) } | 
						
							| 124 |  | relxp |  |-  Rel ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 125 | 6 | eleq2i |  |-  ( <. x , y >. e. S <-> <. x , y >. e. { <. x , y >. | ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) } ) | 
						
							| 126 |  | opabidw |  |-  ( <. x , y >. e. { <. x , y >. | ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) } <-> ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) ) | 
						
							| 127 | 125 126 | bitri |  |-  ( <. x , y >. e. S <-> ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) ) | 
						
							| 128 |  | anass |  |-  ( ( ( y e. NN /\ y <_ N ) /\ ( y x. P ) < ( Q x. ( 2 x. u ) ) ) <-> ( y e. NN /\ ( y <_ N /\ ( y x. P ) < ( Q x. ( 2 x. u ) ) ) ) ) | 
						
							| 129 | 114 | adantr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( 2 x. u ) e. NN ) | 
						
							| 130 | 129 | nnred |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( 2 x. u ) e. RR ) | 
						
							| 131 | 58 | ad2antrr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> P e. NN ) | 
						
							| 132 | 131 | nnred |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> P e. RR ) | 
						
							| 133 | 132 | rehalfcld |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( P / 2 ) e. RR ) | 
						
							| 134 | 11 | adantr |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> M e. RR ) | 
						
							| 135 | 134 | adantr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> M e. RR ) | 
						
							| 136 |  | elfzle2 |  |-  ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) -> u <_ ( |_ ` ( M / 2 ) ) ) | 
						
							| 137 | 136 | adantl |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> u <_ ( |_ ` ( M / 2 ) ) ) | 
						
							| 138 | 134 | rehalfcld |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( M / 2 ) e. RR ) | 
						
							| 139 |  | elfzelz |  |-  ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) -> u e. ZZ ) | 
						
							| 140 | 139 | adantl |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> u e. ZZ ) | 
						
							| 141 |  | flge |  |-  ( ( ( M / 2 ) e. RR /\ u e. ZZ ) -> ( u <_ ( M / 2 ) <-> u <_ ( |_ ` ( M / 2 ) ) ) ) | 
						
							| 142 | 138 140 141 | syl2anc |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( u <_ ( M / 2 ) <-> u <_ ( |_ ` ( M / 2 ) ) ) ) | 
						
							| 143 | 137 142 | mpbird |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> u <_ ( M / 2 ) ) | 
						
							| 144 |  | elfznn |  |-  ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) -> u e. NN ) | 
						
							| 145 | 144 | adantl |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> u e. NN ) | 
						
							| 146 | 145 | nnred |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> u e. RR ) | 
						
							| 147 |  | 2re |  |-  2 e. RR | 
						
							| 148 | 147 | a1i |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> 2 e. RR ) | 
						
							| 149 |  | 2pos |  |-  0 < 2 | 
						
							| 150 | 149 | a1i |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> 0 < 2 ) | 
						
							| 151 |  | lemuldiv2 |  |-  ( ( u e. RR /\ M e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. u ) <_ M <-> u <_ ( M / 2 ) ) ) | 
						
							| 152 | 146 134 148 150 151 | syl112anc |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( ( 2 x. u ) <_ M <-> u <_ ( M / 2 ) ) ) | 
						
							| 153 | 143 152 | mpbird |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( 2 x. u ) <_ M ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( 2 x. u ) <_ M ) | 
						
							| 155 | 132 | ltm1d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( P - 1 ) < P ) | 
						
							| 156 |  | peano2rem |  |-  ( P e. RR -> ( P - 1 ) e. RR ) | 
						
							| 157 | 132 156 | syl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( P - 1 ) e. RR ) | 
						
							| 158 | 147 | a1i |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> 2 e. RR ) | 
						
							| 159 | 149 | a1i |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> 0 < 2 ) | 
						
							| 160 |  | ltdiv1 |  |-  ( ( ( P - 1 ) e. RR /\ P e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( P - 1 ) < P <-> ( ( P - 1 ) / 2 ) < ( P / 2 ) ) ) | 
						
							| 161 | 157 132 158 159 160 | syl112anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( P - 1 ) < P <-> ( ( P - 1 ) / 2 ) < ( P / 2 ) ) ) | 
						
							| 162 | 155 161 | mpbid |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( P - 1 ) / 2 ) < ( P / 2 ) ) | 
						
							| 163 | 4 162 | eqbrtrid |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> M < ( P / 2 ) ) | 
						
							| 164 | 130 135 133 154 163 | lelttrd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( 2 x. u ) < ( P / 2 ) ) | 
						
							| 165 | 131 | nnrpd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> P e. RR+ ) | 
						
							| 166 |  | rphalflt |  |-  ( P e. RR+ -> ( P / 2 ) < P ) | 
						
							| 167 | 165 166 | syl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( P / 2 ) < P ) | 
						
							| 168 | 130 133 132 164 167 | lttrd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( 2 x. u ) < P ) | 
						
							| 169 | 130 132 | ltnled |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( 2 x. u ) < P <-> -. P <_ ( 2 x. u ) ) ) | 
						
							| 170 | 168 169 | mpbid |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> -. P <_ ( 2 x. u ) ) | 
						
							| 171 | 1 | eldifad |  |-  ( ph -> P e. Prime ) | 
						
							| 172 | 171 | ad2antrr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> P e. Prime ) | 
						
							| 173 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 174 | 172 173 | syl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> P e. ZZ ) | 
						
							| 175 |  | dvdsle |  |-  ( ( P e. ZZ /\ ( 2 x. u ) e. NN ) -> ( P || ( 2 x. u ) -> P <_ ( 2 x. u ) ) ) | 
						
							| 176 | 174 129 175 | syl2anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( P || ( 2 x. u ) -> P <_ ( 2 x. u ) ) ) | 
						
							| 177 | 170 176 | mtod |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> -. P || ( 2 x. u ) ) | 
						
							| 178 | 2 | eldifad |  |-  ( ph -> Q e. Prime ) | 
						
							| 179 |  | prmrp |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( P gcd Q ) = 1 <-> P =/= Q ) ) | 
						
							| 180 | 171 178 179 | syl2anc |  |-  ( ph -> ( ( P gcd Q ) = 1 <-> P =/= Q ) ) | 
						
							| 181 | 3 180 | mpbird |  |-  ( ph -> ( P gcd Q ) = 1 ) | 
						
							| 182 | 181 | ad2antrr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( P gcd Q ) = 1 ) | 
						
							| 183 | 178 | ad2antrr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> Q e. Prime ) | 
						
							| 184 |  | prmz |  |-  ( Q e. Prime -> Q e. ZZ ) | 
						
							| 185 | 183 184 | syl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> Q e. ZZ ) | 
						
							| 186 | 129 | nnzd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( 2 x. u ) e. ZZ ) | 
						
							| 187 |  | coprmdvds |  |-  ( ( P e. ZZ /\ Q e. ZZ /\ ( 2 x. u ) e. ZZ ) -> ( ( P || ( Q x. ( 2 x. u ) ) /\ ( P gcd Q ) = 1 ) -> P || ( 2 x. u ) ) ) | 
						
							| 188 | 174 185 186 187 | syl3anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( P || ( Q x. ( 2 x. u ) ) /\ ( P gcd Q ) = 1 ) -> P || ( 2 x. u ) ) ) | 
						
							| 189 | 182 188 | mpan2d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( P || ( Q x. ( 2 x. u ) ) -> P || ( 2 x. u ) ) ) | 
						
							| 190 | 177 189 | mtod |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> -. P || ( Q x. ( 2 x. u ) ) ) | 
						
							| 191 |  | nnz |  |-  ( y e. NN -> y e. ZZ ) | 
						
							| 192 | 191 | adantl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> y e. ZZ ) | 
						
							| 193 |  | dvdsmul2 |  |-  ( ( y e. ZZ /\ P e. ZZ ) -> P || ( y x. P ) ) | 
						
							| 194 | 192 174 193 | syl2anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> P || ( y x. P ) ) | 
						
							| 195 |  | breq2 |  |-  ( ( Q x. ( 2 x. u ) ) = ( y x. P ) -> ( P || ( Q x. ( 2 x. u ) ) <-> P || ( y x. P ) ) ) | 
						
							| 196 | 194 195 | syl5ibrcom |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( Q x. ( 2 x. u ) ) = ( y x. P ) -> P || ( Q x. ( 2 x. u ) ) ) ) | 
						
							| 197 | 196 | necon3bd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( -. P || ( Q x. ( 2 x. u ) ) -> ( Q x. ( 2 x. u ) ) =/= ( y x. P ) ) ) | 
						
							| 198 | 190 197 | mpd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q x. ( 2 x. u ) ) =/= ( y x. P ) ) | 
						
							| 199 |  | simpr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> y e. NN ) | 
						
							| 200 | 199 131 | nnmulcld |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( y x. P ) e. NN ) | 
						
							| 201 | 200 | nnred |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( y x. P ) e. RR ) | 
						
							| 202 | 56 | adantr |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> Q e. NN ) | 
						
							| 203 | 202 114 | nnmulcld |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( Q x. ( 2 x. u ) ) e. NN ) | 
						
							| 204 | 203 | adantr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q x. ( 2 x. u ) ) e. NN ) | 
						
							| 205 | 204 | nnred |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q x. ( 2 x. u ) ) e. RR ) | 
						
							| 206 | 201 205 | ltlend |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) < ( Q x. ( 2 x. u ) ) <-> ( ( y x. P ) <_ ( Q x. ( 2 x. u ) ) /\ ( Q x. ( 2 x. u ) ) =/= ( y x. P ) ) ) ) | 
						
							| 207 | 198 206 | mpbiran2d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) < ( Q x. ( 2 x. u ) ) <-> ( y x. P ) <_ ( Q x. ( 2 x. u ) ) ) ) | 
						
							| 208 |  | nnre |  |-  ( y e. NN -> y e. RR ) | 
						
							| 209 | 208 | adantl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> y e. RR ) | 
						
							| 210 | 131 | nngt0d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> 0 < P ) | 
						
							| 211 |  | lemuldiv |  |-  ( ( y e. RR /\ ( Q x. ( 2 x. u ) ) e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( y x. P ) <_ ( Q x. ( 2 x. u ) ) <-> y <_ ( ( Q x. ( 2 x. u ) ) / P ) ) ) | 
						
							| 212 | 209 205 132 210 211 | syl112anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) <_ ( Q x. ( 2 x. u ) ) <-> y <_ ( ( Q x. ( 2 x. u ) ) / P ) ) ) | 
						
							| 213 | 202 | adantr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> Q e. NN ) | 
						
							| 214 | 213 | nncnd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> Q e. CC ) | 
						
							| 215 | 129 | nncnd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( 2 x. u ) e. CC ) | 
						
							| 216 | 131 | nncnd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> P e. CC ) | 
						
							| 217 | 131 | nnne0d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> P =/= 0 ) | 
						
							| 218 | 214 215 216 217 | div23d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( Q x. ( 2 x. u ) ) / P ) = ( ( Q / P ) x. ( 2 x. u ) ) ) | 
						
							| 219 | 218 | breq2d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( y <_ ( ( Q x. ( 2 x. u ) ) / P ) <-> y <_ ( ( Q / P ) x. ( 2 x. u ) ) ) ) | 
						
							| 220 | 207 212 219 | 3bitrd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) < ( Q x. ( 2 x. u ) ) <-> y <_ ( ( Q / P ) x. ( 2 x. u ) ) ) ) | 
						
							| 221 | 213 | nnred |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> Q e. RR ) | 
						
							| 222 | 213 | nngt0d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> 0 < Q ) | 
						
							| 223 |  | ltmul2 |  |-  ( ( ( 2 x. u ) e. RR /\ ( P / 2 ) e. RR /\ ( Q e. RR /\ 0 < Q ) ) -> ( ( 2 x. u ) < ( P / 2 ) <-> ( Q x. ( 2 x. u ) ) < ( Q x. ( P / 2 ) ) ) ) | 
						
							| 224 | 130 133 221 222 223 | syl112anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( 2 x. u ) < ( P / 2 ) <-> ( Q x. ( 2 x. u ) ) < ( Q x. ( P / 2 ) ) ) ) | 
						
							| 225 | 164 224 | mpbid |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q x. ( 2 x. u ) ) < ( Q x. ( P / 2 ) ) ) | 
						
							| 226 |  | 2cnd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> 2 e. CC ) | 
						
							| 227 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 228 | 227 | a1i |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> 2 =/= 0 ) | 
						
							| 229 |  | divass |  |-  ( ( Q e. CC /\ P e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( Q x. P ) / 2 ) = ( Q x. ( P / 2 ) ) ) | 
						
							| 230 |  | div23 |  |-  ( ( Q e. CC /\ P e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( Q x. P ) / 2 ) = ( ( Q / 2 ) x. P ) ) | 
						
							| 231 | 229 230 | eqtr3d |  |-  ( ( Q e. CC /\ P e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( Q x. ( P / 2 ) ) = ( ( Q / 2 ) x. P ) ) | 
						
							| 232 | 214 216 226 228 231 | syl112anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q x. ( P / 2 ) ) = ( ( Q / 2 ) x. P ) ) | 
						
							| 233 | 225 232 | breqtrd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q x. ( 2 x. u ) ) < ( ( Q / 2 ) x. P ) ) | 
						
							| 234 | 221 | rehalfcld |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q / 2 ) e. RR ) | 
						
							| 235 | 234 132 | remulcld |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( Q / 2 ) x. P ) e. RR ) | 
						
							| 236 |  | lttr |  |-  ( ( ( y x. P ) e. RR /\ ( Q x. ( 2 x. u ) ) e. RR /\ ( ( Q / 2 ) x. P ) e. RR ) -> ( ( ( y x. P ) < ( Q x. ( 2 x. u ) ) /\ ( Q x. ( 2 x. u ) ) < ( ( Q / 2 ) x. P ) ) -> ( y x. P ) < ( ( Q / 2 ) x. P ) ) ) | 
						
							| 237 | 201 205 235 236 | syl3anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( ( y x. P ) < ( Q x. ( 2 x. u ) ) /\ ( Q x. ( 2 x. u ) ) < ( ( Q / 2 ) x. P ) ) -> ( y x. P ) < ( ( Q / 2 ) x. P ) ) ) | 
						
							| 238 | 233 237 | mpan2d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) < ( Q x. ( 2 x. u ) ) -> ( y x. P ) < ( ( Q / 2 ) x. P ) ) ) | 
						
							| 239 |  | ltmul1 |  |-  ( ( y e. RR /\ ( Q / 2 ) e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( y < ( Q / 2 ) <-> ( y x. P ) < ( ( Q / 2 ) x. P ) ) ) | 
						
							| 240 | 209 234 132 210 239 | syl112anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( y < ( Q / 2 ) <-> ( y x. P ) < ( ( Q / 2 ) x. P ) ) ) | 
						
							| 241 | 238 240 | sylibrd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) < ( Q x. ( 2 x. u ) ) -> y < ( Q / 2 ) ) ) | 
						
							| 242 |  | peano2rem |  |-  ( Q e. RR -> ( Q - 1 ) e. RR ) | 
						
							| 243 | 221 242 | syl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q - 1 ) e. RR ) | 
						
							| 244 | 243 | recnd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q - 1 ) e. CC ) | 
						
							| 245 | 214 244 226 228 | divsubdird |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( Q - ( Q - 1 ) ) / 2 ) = ( ( Q / 2 ) - ( ( Q - 1 ) / 2 ) ) ) | 
						
							| 246 | 5 | oveq2i |  |-  ( ( Q / 2 ) - N ) = ( ( Q / 2 ) - ( ( Q - 1 ) / 2 ) ) | 
						
							| 247 | 245 246 | eqtr4di |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( Q - ( Q - 1 ) ) / 2 ) = ( ( Q / 2 ) - N ) ) | 
						
							| 248 |  | ax-1cn |  |-  1 e. CC | 
						
							| 249 |  | nncan |  |-  ( ( Q e. CC /\ 1 e. CC ) -> ( Q - ( Q - 1 ) ) = 1 ) | 
						
							| 250 | 214 248 249 | sylancl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q - ( Q - 1 ) ) = 1 ) | 
						
							| 251 | 250 | oveq1d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( Q - ( Q - 1 ) ) / 2 ) = ( 1 / 2 ) ) | 
						
							| 252 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 253 | 251 252 | eqbrtrdi |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( Q - ( Q - 1 ) ) / 2 ) < 1 ) | 
						
							| 254 | 247 253 | eqbrtrrd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( Q / 2 ) - N ) < 1 ) | 
						
							| 255 | 2 5 | gausslemma2dlem0b |  |-  ( ph -> N e. NN ) | 
						
							| 256 | 255 | ad2antrr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> N e. NN ) | 
						
							| 257 | 256 | nnred |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> N e. RR ) | 
						
							| 258 |  | 1red |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> 1 e. RR ) | 
						
							| 259 | 234 257 258 | ltsubadd2d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( ( Q / 2 ) - N ) < 1 <-> ( Q / 2 ) < ( N + 1 ) ) ) | 
						
							| 260 | 254 259 | mpbid |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( Q / 2 ) < ( N + 1 ) ) | 
						
							| 261 |  | peano2re |  |-  ( N e. RR -> ( N + 1 ) e. RR ) | 
						
							| 262 | 257 261 | syl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( N + 1 ) e. RR ) | 
						
							| 263 |  | lttr |  |-  ( ( y e. RR /\ ( Q / 2 ) e. RR /\ ( N + 1 ) e. RR ) -> ( ( y < ( Q / 2 ) /\ ( Q / 2 ) < ( N + 1 ) ) -> y < ( N + 1 ) ) ) | 
						
							| 264 | 209 234 262 263 | syl3anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y < ( Q / 2 ) /\ ( Q / 2 ) < ( N + 1 ) ) -> y < ( N + 1 ) ) ) | 
						
							| 265 | 260 264 | mpan2d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( y < ( Q / 2 ) -> y < ( N + 1 ) ) ) | 
						
							| 266 | 241 265 | syld |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) < ( Q x. ( 2 x. u ) ) -> y < ( N + 1 ) ) ) | 
						
							| 267 |  | nnleltp1 |  |-  ( ( y e. NN /\ N e. NN ) -> ( y <_ N <-> y < ( N + 1 ) ) ) | 
						
							| 268 | 199 256 267 | syl2anc |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( y <_ N <-> y < ( N + 1 ) ) ) | 
						
							| 269 | 266 268 | sylibrd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) < ( Q x. ( 2 x. u ) ) -> y <_ N ) ) | 
						
							| 270 | 269 | pm4.71rd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y x. P ) < ( Q x. ( 2 x. u ) ) <-> ( y <_ N /\ ( y x. P ) < ( Q x. ( 2 x. u ) ) ) ) ) | 
						
							| 271 | 92 67 | syldan |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( ( Q / P ) x. ( 2 x. u ) ) e. RR ) | 
						
							| 272 |  | flge |  |-  ( ( ( ( Q / P ) x. ( 2 x. u ) ) e. RR /\ y e. ZZ ) -> ( y <_ ( ( Q / P ) x. ( 2 x. u ) ) <-> y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 273 | 271 191 272 | syl2an |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( y <_ ( ( Q / P ) x. ( 2 x. u ) ) <-> y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 274 | 220 270 273 | 3bitr3d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ y e. NN ) -> ( ( y <_ N /\ ( y x. P ) < ( Q x. ( 2 x. u ) ) ) <-> y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) | 
						
							| 275 | 274 | pm5.32da |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( ( y e. NN /\ ( y <_ N /\ ( y x. P ) < ( Q x. ( 2 x. u ) ) ) ) <-> ( y e. NN /\ y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 276 | 128 275 | bitrid |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( ( ( y e. NN /\ y <_ N ) /\ ( y x. P ) < ( Q x. ( 2 x. u ) ) ) <-> ( y e. NN /\ y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 277 | 276 | adantr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( ( ( y e. NN /\ y <_ N ) /\ ( y x. P ) < ( Q x. ( 2 x. u ) ) ) <-> ( y e. NN /\ y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 278 |  | simpr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> x = ( 2 x. u ) ) | 
						
							| 279 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 280 | 114 279 | eleqtrdi |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( 2 x. u ) e. ( ZZ>= ` 1 ) ) | 
						
							| 281 | 26 | adantr |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> M e. ZZ ) | 
						
							| 282 |  | elfz5 |  |-  ( ( ( 2 x. u ) e. ( ZZ>= ` 1 ) /\ M e. ZZ ) -> ( ( 2 x. u ) e. ( 1 ... M ) <-> ( 2 x. u ) <_ M ) ) | 
						
							| 283 | 280 281 282 | syl2anc |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( ( 2 x. u ) e. ( 1 ... M ) <-> ( 2 x. u ) <_ M ) ) | 
						
							| 284 | 153 283 | mpbird |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( 2 x. u ) e. ( 1 ... M ) ) | 
						
							| 285 | 284 | adantr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( 2 x. u ) e. ( 1 ... M ) ) | 
						
							| 286 | 278 285 | eqeltrd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> x e. ( 1 ... M ) ) | 
						
							| 287 | 286 | biantrurd |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( y e. ( 1 ... N ) <-> ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) ) ) | 
						
							| 288 | 255 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 289 | 288 | ad2antrr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> N e. ZZ ) | 
						
							| 290 |  | fznn |  |-  ( N e. ZZ -> ( y e. ( 1 ... N ) <-> ( y e. NN /\ y <_ N ) ) ) | 
						
							| 291 | 289 290 | syl |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( y e. ( 1 ... N ) <-> ( y e. NN /\ y <_ N ) ) ) | 
						
							| 292 | 287 291 | bitr3d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) <-> ( y e. NN /\ y <_ N ) ) ) | 
						
							| 293 |  | oveq1 |  |-  ( x = ( 2 x. u ) -> ( x x. Q ) = ( ( 2 x. u ) x. Q ) ) | 
						
							| 294 | 114 | nncnd |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( 2 x. u ) e. CC ) | 
						
							| 295 | 202 | nncnd |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> Q e. CC ) | 
						
							| 296 | 294 295 | mulcomd |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( ( 2 x. u ) x. Q ) = ( Q x. ( 2 x. u ) ) ) | 
						
							| 297 | 293 296 | sylan9eqr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( x x. Q ) = ( Q x. ( 2 x. u ) ) ) | 
						
							| 298 | 297 | breq2d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( ( y x. P ) < ( x x. Q ) <-> ( y x. P ) < ( Q x. ( 2 x. u ) ) ) ) | 
						
							| 299 | 292 298 | anbi12d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) <-> ( ( y e. NN /\ y <_ N ) /\ ( y x. P ) < ( Q x. ( 2 x. u ) ) ) ) ) | 
						
							| 300 | 271 | flcld |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ ) | 
						
							| 301 |  | fznn |  |-  ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. ZZ -> ( y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <-> ( y e. NN /\ y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 302 | 300 301 | syl |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <-> ( y e. NN /\ y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 303 | 302 | adantr |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) <-> ( y e. NN /\ y <_ ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 304 | 277 299 303 | 3bitr4d |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( ( ( x e. ( 1 ... M ) /\ y e. ( 1 ... N ) ) /\ ( y x. P ) < ( x x. Q ) ) <-> y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 305 | 127 304 | bitrid |  |-  ( ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) /\ x = ( 2 x. u ) ) -> ( <. x , y >. e. S <-> y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 306 | 305 | pm5.32da |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( ( x = ( 2 x. u ) /\ <. x , y >. e. S ) <-> ( x = ( 2 x. u ) /\ y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) | 
						
							| 307 |  | vex |  |-  x e. _V | 
						
							| 308 |  | vex |  |-  y e. _V | 
						
							| 309 | 307 308 | op1std |  |-  ( z = <. x , y >. -> ( 1st ` z ) = x ) | 
						
							| 310 | 309 | eqeq2d |  |-  ( z = <. x , y >. -> ( ( 2 x. u ) = ( 1st ` z ) <-> ( 2 x. u ) = x ) ) | 
						
							| 311 |  | eqcom |  |-  ( ( 2 x. u ) = x <-> x = ( 2 x. u ) ) | 
						
							| 312 | 310 311 | bitrdi |  |-  ( z = <. x , y >. -> ( ( 2 x. u ) = ( 1st ` z ) <-> x = ( 2 x. u ) ) ) | 
						
							| 313 | 312 | elrab |  |-  ( <. x , y >. e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } <-> ( <. x , y >. e. S /\ x = ( 2 x. u ) ) ) | 
						
							| 314 | 313 | biancomi |  |-  ( <. x , y >. e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } <-> ( x = ( 2 x. u ) /\ <. x , y >. e. S ) ) | 
						
							| 315 |  | opelxp |  |-  ( <. x , y >. e. ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) <-> ( x e. { ( 2 x. u ) } /\ y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 316 |  | velsn |  |-  ( x e. { ( 2 x. u ) } <-> x = ( 2 x. u ) ) | 
						
							| 317 | 316 | anbi1i |  |-  ( ( x e. { ( 2 x. u ) } /\ y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) <-> ( x = ( 2 x. u ) /\ y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 318 | 315 317 | bitri |  |-  ( <. x , y >. e. ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) <-> ( x = ( 2 x. u ) /\ y e. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 319 | 306 314 318 | 3bitr4g |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( <. x , y >. e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } <-> <. x , y >. e. ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) ) | 
						
							| 320 | 123 124 319 | eqrelrdv |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> { z e. S | ( 2 x. u ) = ( 1st ` z ) } = ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 321 | 320 | eqcomd |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) = { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) | 
						
							| 322 | 321 | fveq2d |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( # ` ( { ( 2 x. u ) } X. ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) = ( # ` { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) | 
						
							| 323 |  | hashfz1 |  |-  ( ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) e. NN0 -> ( # ` ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) = ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) | 
						
							| 324 | 93 323 | syl |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( # ` ( 1 ... ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) = ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) | 
						
							| 325 | 119 322 324 | 3eqtr3rd |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) = ( # ` { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) | 
						
							| 326 | 325 | sumeq2dv |  |-  ( ph -> sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) = sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( # ` { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) | 
						
							| 327 | 102 | adantr |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> S e. Fin ) | 
						
							| 328 |  | ssfi |  |-  ( ( S e. Fin /\ { z e. S | ( 2 x. u ) = ( 1st ` z ) } C_ S ) -> { z e. S | ( 2 x. u ) = ( 1st ` z ) } e. Fin ) | 
						
							| 329 | 327 120 328 | sylancl |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> { z e. S | ( 2 x. u ) = ( 1st ` z ) } e. Fin ) | 
						
							| 330 |  | fveq2 |  |-  ( z = v -> ( 1st ` z ) = ( 1st ` v ) ) | 
						
							| 331 | 330 | eqeq2d |  |-  ( z = v -> ( ( 2 x. u ) = ( 1st ` z ) <-> ( 2 x. u ) = ( 1st ` v ) ) ) | 
						
							| 332 | 331 | elrab |  |-  ( v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } <-> ( v e. S /\ ( 2 x. u ) = ( 1st ` v ) ) ) | 
						
							| 333 | 332 | simprbi |  |-  ( v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } -> ( 2 x. u ) = ( 1st ` v ) ) | 
						
							| 334 | 333 | ad2antll |  |-  ( ( ph /\ ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) -> ( 2 x. u ) = ( 1st ` v ) ) | 
						
							| 335 | 334 | oveq1d |  |-  ( ( ph /\ ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) -> ( ( 2 x. u ) / 2 ) = ( ( 1st ` v ) / 2 ) ) | 
						
							| 336 | 145 | nncnd |  |-  ( ( ph /\ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) -> u e. CC ) | 
						
							| 337 | 336 | adantrr |  |-  ( ( ph /\ ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) -> u e. CC ) | 
						
							| 338 |  | 2cnd |  |-  ( ( ph /\ ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) -> 2 e. CC ) | 
						
							| 339 | 227 | a1i |  |-  ( ( ph /\ ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) -> 2 =/= 0 ) | 
						
							| 340 | 337 338 339 | divcan3d |  |-  ( ( ph /\ ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) -> ( ( 2 x. u ) / 2 ) = u ) | 
						
							| 341 | 335 340 | eqtr3d |  |-  ( ( ph /\ ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) -> ( ( 1st ` v ) / 2 ) = u ) | 
						
							| 342 | 341 | ralrimivva |  |-  ( ph -> A. u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) A. v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ( ( 1st ` v ) / 2 ) = u ) | 
						
							| 343 |  | invdisj |  |-  ( A. u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) A. v e. { z e. S | ( 2 x. u ) = ( 1st ` z ) } ( ( 1st ` v ) / 2 ) = u -> Disj_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) | 
						
							| 344 | 342 343 | syl |  |-  ( ph -> Disj_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) | 
						
							| 345 | 89 329 344 | hashiun |  |-  ( ph -> ( # ` U_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) = sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( # ` { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) ) | 
						
							| 346 |  | iunrab |  |-  U_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) { z e. S | ( 2 x. u ) = ( 1st ` z ) } = { z e. S | E. u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( 2 x. u ) = ( 1st ` z ) } | 
						
							| 347 |  | 2cn |  |-  2 e. CC | 
						
							| 348 |  | zcn |  |-  ( u e. ZZ -> u e. CC ) | 
						
							| 349 | 348 | adantl |  |-  ( ( ( ph /\ z e. S ) /\ u e. ZZ ) -> u e. CC ) | 
						
							| 350 |  | mulcom |  |-  ( ( 2 e. CC /\ u e. CC ) -> ( 2 x. u ) = ( u x. 2 ) ) | 
						
							| 351 | 347 349 350 | sylancr |  |-  ( ( ( ph /\ z e. S ) /\ u e. ZZ ) -> ( 2 x. u ) = ( u x. 2 ) ) | 
						
							| 352 | 351 | eqeq1d |  |-  ( ( ( ph /\ z e. S ) /\ u e. ZZ ) -> ( ( 2 x. u ) = ( 1st ` z ) <-> ( u x. 2 ) = ( 1st ` z ) ) ) | 
						
							| 353 | 352 | rexbidva |  |-  ( ( ph /\ z e. S ) -> ( E. u e. ZZ ( 2 x. u ) = ( 1st ` z ) <-> E. u e. ZZ ( u x. 2 ) = ( 1st ` z ) ) ) | 
						
							| 354 | 139 | anim1i |  |-  ( ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ ( 2 x. u ) = ( 1st ` z ) ) -> ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) | 
						
							| 355 | 354 | reximi2 |  |-  ( E. u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( 2 x. u ) = ( 1st ` z ) -> E. u e. ZZ ( 2 x. u ) = ( 1st ` z ) ) | 
						
							| 356 |  | simprr |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( 2 x. u ) = ( 1st ` z ) ) | 
						
							| 357 |  | simpr |  |-  ( ( ph /\ z e. S ) -> z e. S ) | 
						
							| 358 | 100 357 | sselid |  |-  ( ( ph /\ z e. S ) -> z e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) | 
						
							| 359 |  | xp1st |  |-  ( z e. ( ( 1 ... M ) X. ( 1 ... N ) ) -> ( 1st ` z ) e. ( 1 ... M ) ) | 
						
							| 360 | 358 359 | syl |  |-  ( ( ph /\ z e. S ) -> ( 1st ` z ) e. ( 1 ... M ) ) | 
						
							| 361 | 360 | adantr |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( 1st ` z ) e. ( 1 ... M ) ) | 
						
							| 362 |  | elfzle2 |  |-  ( ( 1st ` z ) e. ( 1 ... M ) -> ( 1st ` z ) <_ M ) | 
						
							| 363 | 361 362 | syl |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( 1st ` z ) <_ M ) | 
						
							| 364 | 356 363 | eqbrtrd |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( 2 x. u ) <_ M ) | 
						
							| 365 |  | zre |  |-  ( u e. ZZ -> u e. RR ) | 
						
							| 366 | 365 | ad2antrl |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> u e. RR ) | 
						
							| 367 | 11 | ad2antrr |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> M e. RR ) | 
						
							| 368 | 147 | a1i |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> 2 e. RR ) | 
						
							| 369 | 149 | a1i |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> 0 < 2 ) | 
						
							| 370 | 366 367 368 369 151 | syl112anc |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( ( 2 x. u ) <_ M <-> u <_ ( M / 2 ) ) ) | 
						
							| 371 | 364 370 | mpbid |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> u <_ ( M / 2 ) ) | 
						
							| 372 | 12 | ad2antrr |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( M / 2 ) e. RR ) | 
						
							| 373 |  | simprl |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> u e. ZZ ) | 
						
							| 374 | 372 373 141 | syl2anc |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( u <_ ( M / 2 ) <-> u <_ ( |_ ` ( M / 2 ) ) ) ) | 
						
							| 375 | 371 374 | mpbid |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> u <_ ( |_ ` ( M / 2 ) ) ) | 
						
							| 376 |  | 2t0e0 |  |-  ( 2 x. 0 ) = 0 | 
						
							| 377 |  | elfznn |  |-  ( ( 1st ` z ) e. ( 1 ... M ) -> ( 1st ` z ) e. NN ) | 
						
							| 378 | 361 377 | syl |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( 1st ` z ) e. NN ) | 
						
							| 379 | 356 378 | eqeltrd |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( 2 x. u ) e. NN ) | 
						
							| 380 | 379 | nngt0d |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> 0 < ( 2 x. u ) ) | 
						
							| 381 | 376 380 | eqbrtrid |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( 2 x. 0 ) < ( 2 x. u ) ) | 
						
							| 382 |  | 0red |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> 0 e. RR ) | 
						
							| 383 |  | ltmul2 |  |-  ( ( 0 e. RR /\ u e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 0 < u <-> ( 2 x. 0 ) < ( 2 x. u ) ) ) | 
						
							| 384 | 382 366 368 369 383 | syl112anc |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( 0 < u <-> ( 2 x. 0 ) < ( 2 x. u ) ) ) | 
						
							| 385 | 381 384 | mpbird |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> 0 < u ) | 
						
							| 386 |  | elnnz |  |-  ( u e. NN <-> ( u e. ZZ /\ 0 < u ) ) | 
						
							| 387 | 373 385 386 | sylanbrc |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> u e. NN ) | 
						
							| 388 | 387 279 | eleqtrdi |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> u e. ( ZZ>= ` 1 ) ) | 
						
							| 389 | 13 | ad2antrr |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( |_ ` ( M / 2 ) ) e. ZZ ) | 
						
							| 390 |  | elfz5 |  |-  ( ( u e. ( ZZ>= ` 1 ) /\ ( |_ ` ( M / 2 ) ) e. ZZ ) -> ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) <-> u <_ ( |_ ` ( M / 2 ) ) ) ) | 
						
							| 391 | 388 389 390 | syl2anc |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) <-> u <_ ( |_ ` ( M / 2 ) ) ) ) | 
						
							| 392 | 375 391 | mpbird |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ) | 
						
							| 393 | 392 356 | jca |  |-  ( ( ( ph /\ z e. S ) /\ ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) ) -> ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ ( 2 x. u ) = ( 1st ` z ) ) ) | 
						
							| 394 | 393 | ex |  |-  ( ( ph /\ z e. S ) -> ( ( u e. ZZ /\ ( 2 x. u ) = ( 1st ` z ) ) -> ( u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) /\ ( 2 x. u ) = ( 1st ` z ) ) ) ) | 
						
							| 395 | 394 | reximdv2 |  |-  ( ( ph /\ z e. S ) -> ( E. u e. ZZ ( 2 x. u ) = ( 1st ` z ) -> E. u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( 2 x. u ) = ( 1st ` z ) ) ) | 
						
							| 396 | 355 395 | impbid2 |  |-  ( ( ph /\ z e. S ) -> ( E. u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( 2 x. u ) = ( 1st ` z ) <-> E. u e. ZZ ( 2 x. u ) = ( 1st ` z ) ) ) | 
						
							| 397 |  | 2z |  |-  2 e. ZZ | 
						
							| 398 | 360 | elfzelzd |  |-  ( ( ph /\ z e. S ) -> ( 1st ` z ) e. ZZ ) | 
						
							| 399 |  | divides |  |-  ( ( 2 e. ZZ /\ ( 1st ` z ) e. ZZ ) -> ( 2 || ( 1st ` z ) <-> E. u e. ZZ ( u x. 2 ) = ( 1st ` z ) ) ) | 
						
							| 400 | 397 398 399 | sylancr |  |-  ( ( ph /\ z e. S ) -> ( 2 || ( 1st ` z ) <-> E. u e. ZZ ( u x. 2 ) = ( 1st ` z ) ) ) | 
						
							| 401 | 353 396 400 | 3bitr4d |  |-  ( ( ph /\ z e. S ) -> ( E. u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( 2 x. u ) = ( 1st ` z ) <-> 2 || ( 1st ` z ) ) ) | 
						
							| 402 | 401 | rabbidva |  |-  ( ph -> { z e. S | E. u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( 2 x. u ) = ( 1st ` z ) } = { z e. S | 2 || ( 1st ` z ) } ) | 
						
							| 403 | 346 402 | eqtrid |  |-  ( ph -> U_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) { z e. S | ( 2 x. u ) = ( 1st ` z ) } = { z e. S | 2 || ( 1st ` z ) } ) | 
						
							| 404 | 403 | fveq2d |  |-  ( ph -> ( # ` U_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) { z e. S | ( 2 x. u ) = ( 1st ` z ) } ) = ( # ` { z e. S | 2 || ( 1st ` z ) } ) ) | 
						
							| 405 | 326 345 404 | 3eqtr2d |  |-  ( ph -> sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) = ( # ` { z e. S | 2 || ( 1st ` z ) } ) ) | 
						
							| 406 | 405 | oveq2d |  |-  ( ph -> ( -u 1 ^ sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( -u 1 ^ ( # ` { z e. S | 2 || ( 1st ` z ) } ) ) ) | 
						
							| 407 | 1 2 3 4 5 6 | lgsquadlem1 |  |-  ( ph -> ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) = ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) | 
						
							| 408 | 406 407 | oveq12d |  |-  ( ph -> ( ( -u 1 ^ sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) x. ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) = ( ( -u 1 ^ ( # ` { z e. S | 2 || ( 1st ` z ) } ) ) x. ( -u 1 ^ ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) ) | 
						
							| 409 | 113 408 | eqtr4d |  |-  ( ph -> ( -u 1 ^ ( ( # ` { z e. S | 2 || ( 1st ` z ) } ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( ( -u 1 ^ sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) x. ( -u 1 ^ sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) ) | 
						
							| 410 |  | inrab |  |-  ( { z e. S | 2 || ( 1st ` z ) } i^i { z e. S | -. 2 || ( 1st ` z ) } ) = { z e. S | ( 2 || ( 1st ` z ) /\ -. 2 || ( 1st ` z ) ) } | 
						
							| 411 |  | pm3.24 |  |-  -. ( 2 || ( 1st ` z ) /\ -. 2 || ( 1st ` z ) ) | 
						
							| 412 | 411 | a1i |  |-  ( ph -> -. ( 2 || ( 1st ` z ) /\ -. 2 || ( 1st ` z ) ) ) | 
						
							| 413 | 412 | ralrimivw |  |-  ( ph -> A. z e. S -. ( 2 || ( 1st ` z ) /\ -. 2 || ( 1st ` z ) ) ) | 
						
							| 414 |  | rabeq0 |  |-  ( { z e. S | ( 2 || ( 1st ` z ) /\ -. 2 || ( 1st ` z ) ) } = (/) <-> A. z e. S -. ( 2 || ( 1st ` z ) /\ -. 2 || ( 1st ` z ) ) ) | 
						
							| 415 | 413 414 | sylibr |  |-  ( ph -> { z e. S | ( 2 || ( 1st ` z ) /\ -. 2 || ( 1st ` z ) ) } = (/) ) | 
						
							| 416 | 410 415 | eqtrid |  |-  ( ph -> ( { z e. S | 2 || ( 1st ` z ) } i^i { z e. S | -. 2 || ( 1st ` z ) } ) = (/) ) | 
						
							| 417 |  | hashun |  |-  ( ( { z e. S | 2 || ( 1st ` z ) } e. Fin /\ { z e. S | -. 2 || ( 1st ` z ) } e. Fin /\ ( { z e. S | 2 || ( 1st ` z ) } i^i { z e. S | -. 2 || ( 1st ` z ) } ) = (/) ) -> ( # ` ( { z e. S | 2 || ( 1st ` z ) } u. { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( ( # ` { z e. S | 2 || ( 1st ` z ) } ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) | 
						
							| 418 | 110 105 416 417 | syl3anc |  |-  ( ph -> ( # ` ( { z e. S | 2 || ( 1st ` z ) } u. { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( ( # ` { z e. S | 2 || ( 1st ` z ) } ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) | 
						
							| 419 |  | unrab |  |-  ( { z e. S | 2 || ( 1st ` z ) } u. { z e. S | -. 2 || ( 1st ` z ) } ) = { z e. S | ( 2 || ( 1st ` z ) \/ -. 2 || ( 1st ` z ) ) } | 
						
							| 420 |  | exmid |  |-  ( 2 || ( 1st ` z ) \/ -. 2 || ( 1st ` z ) ) | 
						
							| 421 | 420 | rgenw |  |-  A. z e. S ( 2 || ( 1st ` z ) \/ -. 2 || ( 1st ` z ) ) | 
						
							| 422 |  | rabid2 |  |-  ( S = { z e. S | ( 2 || ( 1st ` z ) \/ -. 2 || ( 1st ` z ) ) } <-> A. z e. S ( 2 || ( 1st ` z ) \/ -. 2 || ( 1st ` z ) ) ) | 
						
							| 423 | 421 422 | mpbir |  |-  S = { z e. S | ( 2 || ( 1st ` z ) \/ -. 2 || ( 1st ` z ) ) } | 
						
							| 424 | 419 423 | eqtr4i |  |-  ( { z e. S | 2 || ( 1st ` z ) } u. { z e. S | -. 2 || ( 1st ` z ) } ) = S | 
						
							| 425 | 424 | fveq2i |  |-  ( # ` ( { z e. S | 2 || ( 1st ` z ) } u. { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( # ` S ) | 
						
							| 426 | 418 425 | eqtr3di |  |-  ( ph -> ( ( # ` { z e. S | 2 || ( 1st ` z ) } ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) = ( # ` S ) ) | 
						
							| 427 | 426 | oveq2d |  |-  ( ph -> ( -u 1 ^ ( ( # ` { z e. S | 2 || ( 1st ` z ) } ) + ( # ` { z e. S | -. 2 || ( 1st ` z ) } ) ) ) = ( -u 1 ^ ( # ` S ) ) ) | 
						
							| 428 | 95 409 427 | 3eqtr2d |  |-  ( ph -> ( -u 1 ^ ( sum_ u e. ( 1 ... ( |_ ` ( M / 2 ) ) ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) + sum_ u e. ( ( ( |_ ` ( M / 2 ) ) + 1 ) ... M ) ( |_ ` ( ( Q / P ) x. ( 2 x. u ) ) ) ) ) = ( -u 1 ^ ( # ` S ) ) ) | 
						
							| 429 | 7 80 428 | 3eqtrd |  |-  ( ph -> ( Q /L P ) = ( -u 1 ^ ( # ` S ) ) ) |