| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgseisen.1 | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | lgseisen.2 | ⊢ ( 𝜑  →  𝑄  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 3 |  | lgseisen.3 | ⊢ ( 𝜑  →  𝑃  ≠  𝑄 ) | 
						
							| 4 |  | lgsquad.4 | ⊢ 𝑀  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 5 |  | lgsquad.5 | ⊢ 𝑁  =  ( ( 𝑄  −  1 )  /  2 ) | 
						
							| 6 |  | lgsquad.6 | ⊢ 𝑆  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) } | 
						
							| 7 | 1 2 3 | lgseisen | ⊢ ( 𝜑  →  ( 𝑄  /L  𝑃 )  =  ( - 1 ↑ Σ 𝑢  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 8 | 4 | oveq2i | ⊢ ( 1 ... 𝑀 )  =  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 9 | 8 | sumeq1i | ⊢ Σ 𝑢  ∈  ( 1 ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  =  Σ 𝑢  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 10 | 1 4 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 11 | 10 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 12 | 11 | rehalfcld | ⊢ ( 𝜑  →  ( 𝑀  /  2 )  ∈  ℝ ) | 
						
							| 13 | 12 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℤ ) | 
						
							| 14 | 13 | zred | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℝ ) | 
						
							| 15 | 14 | ltp1d | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  <  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ) | 
						
							| 16 |  | fzdisj | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  <  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  →  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∩  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  =  ∅ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∩  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  =  ∅ ) | 
						
							| 18 | 10 | nnrpd | ⊢ ( 𝜑  →  𝑀  ∈  ℝ+ ) | 
						
							| 19 | 18 | rphalfcld | ⊢ ( 𝜑  →  ( 𝑀  /  2 )  ∈  ℝ+ ) | 
						
							| 20 | 19 | rpge0d | ⊢ ( 𝜑  →  0  ≤  ( 𝑀  /  2 ) ) | 
						
							| 21 |  | flge0nn0 | ⊢ ( ( ( 𝑀  /  2 )  ∈  ℝ  ∧  0  ≤  ( 𝑀  /  2 ) )  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℕ0 ) | 
						
							| 22 | 12 20 21 | syl2anc | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℕ0 ) | 
						
							| 23 | 10 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 24 |  | rphalflt | ⊢ ( 𝑀  ∈  ℝ+  →  ( 𝑀  /  2 )  <  𝑀 ) | 
						
							| 25 | 18 24 | syl | ⊢ ( 𝜑  →  ( 𝑀  /  2 )  <  𝑀 ) | 
						
							| 26 | 10 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 27 |  | fllt | ⊢ ( ( ( 𝑀  /  2 )  ∈  ℝ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑀  /  2 )  <  𝑀  ↔  ( ⌊ ‘ ( 𝑀  /  2 ) )  <  𝑀 ) ) | 
						
							| 28 | 12 26 27 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑀  /  2 )  <  𝑀  ↔  ( ⌊ ‘ ( 𝑀  /  2 ) )  <  𝑀 ) ) | 
						
							| 29 | 25 28 | mpbid | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  <  𝑀 ) | 
						
							| 30 | 14 11 29 | ltled | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ≤  𝑀 ) | 
						
							| 31 |  | elfz2nn0 | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( 0 ... 𝑀 )  ↔  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℕ0  ∧  𝑀  ∈  ℕ0  ∧  ( ⌊ ‘ ( 𝑀  /  2 ) )  ≤  𝑀 ) ) | 
						
							| 32 | 22 23 30 31 | syl3anbrc | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 33 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 34 | 23 33 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 35 |  | elfzp12 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( 0 ... 𝑀 )  ↔  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  ∨  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( ( 0  +  1 ) ... 𝑀 ) ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( 0 ... 𝑀 )  ↔  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  ∨  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( ( 0  +  1 ) ... 𝑀 ) ) ) ) | 
						
							| 37 | 32 36 | mpbid | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  ∨  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( ( 0  +  1 ) ... 𝑀 ) ) ) | 
						
							| 38 |  | un0 | ⊢ ( ( 1 ... 𝑀 )  ∪  ∅ )  =  ( 1 ... 𝑀 ) | 
						
							| 39 |  | uncom | ⊢ ( ( 1 ... 𝑀 )  ∪  ∅ )  =  ( ∅  ∪  ( 1 ... 𝑀 ) ) | 
						
							| 40 | 38 39 | eqtr3i | ⊢ ( 1 ... 𝑀 )  =  ( ∅  ∪  ( 1 ... 𝑀 ) ) | 
						
							| 41 |  | oveq2 | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  →  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  =  ( 1 ... 0 ) ) | 
						
							| 42 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 43 | 41 42 | eqtrdi | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  →  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  =  ∅ ) | 
						
							| 44 |  | oveq1 | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 45 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 46 | 44 45 | eqtrdi | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  →  ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 )  =  1 ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  →  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  =  ( 1 ... 𝑀 ) ) | 
						
							| 48 | 43 47 | uneq12d | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  →  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  =  ( ∅  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 49 | 40 48 | eqtr4id | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  →  ( 1 ... 𝑀 )  =  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ) ) | 
						
							| 50 |  | fzsplit | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( 1 ... 𝑀 )  →  ( 1 ... 𝑀 )  =  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ) ) | 
						
							| 51 | 45 | oveq1i | ⊢ ( ( 0  +  1 ) ... 𝑀 )  =  ( 1 ... 𝑀 ) | 
						
							| 52 | 50 51 | eleq2s | ⊢ ( ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( ( 0  +  1 ) ... 𝑀 )  →  ( 1 ... 𝑀 )  =  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ) ) | 
						
							| 53 | 49 52 | jaoi | ⊢ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  =  0  ∨  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ( ( 0  +  1 ) ... 𝑀 ) )  →  ( 1 ... 𝑀 )  =  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ) ) | 
						
							| 54 | 37 53 | syl | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  =  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ) ) | 
						
							| 55 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 56 | 2 | gausslemma2dlem0a | ⊢ ( 𝜑  →  𝑄  ∈  ℕ ) | 
						
							| 57 | 56 | nnred | ⊢ ( 𝜑  →  𝑄  ∈  ℝ ) | 
						
							| 58 | 1 | gausslemma2dlem0a | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 59 | 57 58 | nndivred | ⊢ ( 𝜑  →  ( 𝑄  /  𝑃 )  ∈  ℝ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑄  /  𝑃 )  ∈  ℝ ) | 
						
							| 61 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 62 |  | elfznn | ⊢ ( 𝑢  ∈  ( 1 ... 𝑀 )  →  𝑢  ∈  ℕ ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  𝑢  ∈  ℕ ) | 
						
							| 64 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑢  ∈  ℕ )  →  ( 2  ·  𝑢 )  ∈  ℕ ) | 
						
							| 65 | 61 63 64 | sylancr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ∈  ℕ ) | 
						
							| 66 | 65 | nnred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ∈  ℝ ) | 
						
							| 67 | 60 66 | remulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ ) | 
						
							| 68 | 56 | nnrpd | ⊢ ( 𝜑  →  𝑄  ∈  ℝ+ ) | 
						
							| 69 | 58 | nnrpd | ⊢ ( 𝜑  →  𝑃  ∈  ℝ+ ) | 
						
							| 70 | 68 69 | rpdivcld | ⊢ ( 𝜑  →  ( 𝑄  /  𝑃 )  ∈  ℝ+ ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑄  /  𝑃 )  ∈  ℝ+ ) | 
						
							| 72 | 65 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ·  𝑢 )  ∈  ℝ+ ) | 
						
							| 73 | 71 72 | rpmulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ+ ) | 
						
							| 74 | 73 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 75 |  | flge0nn0 | ⊢ ( ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  0  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℕ0 ) | 
						
							| 76 | 67 74 75 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℕ0 ) | 
						
							| 77 | 76 | nn0cnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℂ ) | 
						
							| 78 | 17 54 55 77 | fsumsplit | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( 1 ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  =  ( Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 79 | 9 78 | eqtr3id | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  =  ( Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( 𝜑  →  ( - 1 ↑ Σ 𝑢  ∈  ( 1 ... ( ( 𝑃  −  1 )  /  2 ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( - 1 ↑ ( Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 81 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 82 | 81 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℂ ) | 
						
							| 83 |  | fzfid | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ∈  Fin ) | 
						
							| 84 |  | ssun2 | ⊢ ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ⊆  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ) | 
						
							| 85 | 84 54 | sseqtrrid | ⊢ ( 𝜑  →  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 )  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 86 | 85 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  𝑢  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 87 | 86 76 | syldan | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℕ0 ) | 
						
							| 88 | 83 87 | fsumnn0cl | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℕ0 ) | 
						
							| 89 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∈  Fin ) | 
						
							| 90 |  | ssun1 | ⊢ ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ⊆  ( ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∪  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ) | 
						
							| 91 | 90 54 | sseqtrrid | ⊢ ( 𝜑  →  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 92 | 91 | sselda | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑢  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 93 | 92 76 | syldan | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℕ0 ) | 
						
							| 94 | 89 93 | fsumnn0cl | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℕ0 ) | 
						
							| 95 | 82 88 94 | expaddd | ⊢ ( 𝜑  →  ( - 1 ↑ ( Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  =  ( ( - 1 ↑ Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ·  ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 96 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 97 |  | xpfi | ⊢ ( ( ( 1 ... 𝑀 )  ∈  Fin  ∧  ( 1 ... 𝑁 )  ∈  Fin )  →  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 98 | 55 96 97 | syl2anc | ⊢ ( 𝜑  →  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) )  ∈  Fin ) | 
						
							| 99 |  | opabssxp | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) }  ⊆  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) | 
						
							| 100 | 6 99 | eqsstri | ⊢ 𝑆  ⊆  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) | 
						
							| 101 |  | ssfi | ⊢ ( ( ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) )  ∈  Fin  ∧  𝑆  ⊆  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) )  →  𝑆  ∈  Fin ) | 
						
							| 102 | 98 100 101 | sylancl | ⊢ ( 𝜑  →  𝑆  ∈  Fin ) | 
						
							| 103 |  | ssrab2 | ⊢ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆 | 
						
							| 104 |  | ssfi | ⊢ ( ( 𝑆  ∈  Fin  ∧  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆 )  →  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin ) | 
						
							| 105 | 102 103 104 | sylancl | ⊢ ( 𝜑  →  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin ) | 
						
							| 106 |  | hashcl | ⊢ ( { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℕ0 ) | 
						
							| 107 | 105 106 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℕ0 ) | 
						
							| 108 |  | ssrab2 | ⊢ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆 | 
						
							| 109 |  | ssfi | ⊢ ( ( 𝑆  ∈  Fin  ∧  { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆 )  →  { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin ) | 
						
							| 110 | 102 108 109 | sylancl | ⊢ ( 𝜑  →  { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin ) | 
						
							| 111 |  | hashcl | ⊢ ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℕ0 ) | 
						
							| 112 | 110 111 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } )  ∈  ℕ0 ) | 
						
							| 113 | 82 107 112 | expaddd | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ·  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) | 
						
							| 114 | 92 65 | syldan | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 2  ·  𝑢 )  ∈  ℕ ) | 
						
							| 115 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  Fin ) | 
						
							| 116 |  | xpsnen2g | ⊢ ( ( ( 2  ·  𝑢 )  ∈  ℕ  ∧  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ∈  Fin )  →  ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ≈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 117 | 114 115 116 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ≈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 118 |  | hasheni | ⊢ ( ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ≈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  →  ( ♯ ‘ ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  =  ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 119 | 117 118 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ♯ ‘ ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  =  ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 120 |  | ssrab2 | ⊢ { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆 | 
						
							| 121 | 6 | relopabiv | ⊢ Rel  𝑆 | 
						
							| 122 |  | relss | ⊢ ( { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆  →  ( Rel  𝑆  →  Rel  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 123 | 120 121 122 | mp2 | ⊢ Rel  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } | 
						
							| 124 |  | relxp | ⊢ Rel  ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 125 | 6 | eleq2i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  𝑆  ↔  〈 𝑥 ,  𝑦 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) } ) | 
						
							| 126 |  | opabidw | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) }  ↔  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) ) | 
						
							| 127 | 125 126 | bitri | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  𝑆  ↔  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) ) ) | 
						
							| 128 |  | anass | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 129 | 114 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 2  ·  𝑢 )  ∈  ℕ ) | 
						
							| 130 | 129 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 2  ·  𝑢 )  ∈  ℝ ) | 
						
							| 131 | 58 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℕ ) | 
						
							| 132 | 131 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℝ ) | 
						
							| 133 | 132 | rehalfcld | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  /  2 )  ∈  ℝ ) | 
						
							| 134 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 135 | 134 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑀  ∈  ℝ ) | 
						
							| 136 |  | elfzle2 | ⊢ ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  →  𝑢  ≤  ( ⌊ ‘ ( 𝑀  /  2 ) ) ) | 
						
							| 137 | 136 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑢  ≤  ( ⌊ ‘ ( 𝑀  /  2 ) ) ) | 
						
							| 138 | 134 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 𝑀  /  2 )  ∈  ℝ ) | 
						
							| 139 |  | elfzelz | ⊢ ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  →  𝑢  ∈  ℤ ) | 
						
							| 140 | 139 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑢  ∈  ℤ ) | 
						
							| 141 |  | flge | ⊢ ( ( ( 𝑀  /  2 )  ∈  ℝ  ∧  𝑢  ∈  ℤ )  →  ( 𝑢  ≤  ( 𝑀  /  2 )  ↔  𝑢  ≤  ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ) | 
						
							| 142 | 138 140 141 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 𝑢  ≤  ( 𝑀  /  2 )  ↔  𝑢  ≤  ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ) | 
						
							| 143 | 137 142 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑢  ≤  ( 𝑀  /  2 ) ) | 
						
							| 144 |  | elfznn | ⊢ ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  →  𝑢  ∈  ℕ ) | 
						
							| 145 | 144 | adantl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑢  ∈  ℕ ) | 
						
							| 146 | 145 | nnred | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑢  ∈  ℝ ) | 
						
							| 147 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 148 | 147 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  2  ∈  ℝ ) | 
						
							| 149 |  | 2pos | ⊢ 0  <  2 | 
						
							| 150 | 149 | a1i | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  0  <  2 ) | 
						
							| 151 |  | lemuldiv2 | ⊢ ( ( 𝑢  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  𝑢 )  ≤  𝑀  ↔  𝑢  ≤  ( 𝑀  /  2 ) ) ) | 
						
							| 152 | 146 134 148 150 151 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ( 2  ·  𝑢 )  ≤  𝑀  ↔  𝑢  ≤  ( 𝑀  /  2 ) ) ) | 
						
							| 153 | 143 152 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 2  ·  𝑢 )  ≤  𝑀 ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 2  ·  𝑢 )  ≤  𝑀 ) | 
						
							| 155 | 132 | ltm1d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  −  1 )  <  𝑃 ) | 
						
							| 156 |  | peano2rem | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 157 | 132 156 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 158 | 147 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  2  ∈  ℝ ) | 
						
							| 159 | 149 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  0  <  2 ) | 
						
							| 160 |  | ltdiv1 | ⊢ ( ( ( 𝑃  −  1 )  ∈  ℝ  ∧  𝑃  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑃  −  1 )  <  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 161 | 157 132 158 159 160 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑃  −  1 )  <  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  <  ( 𝑃  /  2 ) ) ) | 
						
							| 162 | 155 161 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑃  −  1 )  /  2 )  <  ( 𝑃  /  2 ) ) | 
						
							| 163 | 4 162 | eqbrtrid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑀  <  ( 𝑃  /  2 ) ) | 
						
							| 164 | 130 135 133 154 163 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 2  ·  𝑢 )  <  ( 𝑃  /  2 ) ) | 
						
							| 165 | 131 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℝ+ ) | 
						
							| 166 |  | rphalflt | ⊢ ( 𝑃  ∈  ℝ+  →  ( 𝑃  /  2 )  <  𝑃 ) | 
						
							| 167 | 165 166 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  /  2 )  <  𝑃 ) | 
						
							| 168 | 130 133 132 164 167 | lttrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 2  ·  𝑢 )  <  𝑃 ) | 
						
							| 169 | 130 132 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 2  ·  𝑢 )  <  𝑃  ↔  ¬  𝑃  ≤  ( 2  ·  𝑢 ) ) ) | 
						
							| 170 | 168 169 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ¬  𝑃  ≤  ( 2  ·  𝑢 ) ) | 
						
							| 171 | 1 | eldifad | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 172 | 171 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℙ ) | 
						
							| 173 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 174 | 172 173 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℤ ) | 
						
							| 175 |  | dvdsle | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ( 2  ·  𝑢 )  ∈  ℕ )  →  ( 𝑃  ∥  ( 2  ·  𝑢 )  →  𝑃  ≤  ( 2  ·  𝑢 ) ) ) | 
						
							| 176 | 174 129 175 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  ∥  ( 2  ·  𝑢 )  →  𝑃  ≤  ( 2  ·  𝑢 ) ) ) | 
						
							| 177 | 170 176 | mtod | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ¬  𝑃  ∥  ( 2  ·  𝑢 ) ) | 
						
							| 178 | 2 | eldifad | ⊢ ( 𝜑  →  𝑄  ∈  ℙ ) | 
						
							| 179 |  | prmrp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑄  ∈  ℙ )  →  ( ( 𝑃  gcd  𝑄 )  =  1  ↔  𝑃  ≠  𝑄 ) ) | 
						
							| 180 | 171 178 179 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃  gcd  𝑄 )  =  1  ↔  𝑃  ≠  𝑄 ) ) | 
						
							| 181 | 3 180 | mpbird | ⊢ ( 𝜑  →  ( 𝑃  gcd  𝑄 )  =  1 ) | 
						
							| 182 | 181 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  gcd  𝑄 )  =  1 ) | 
						
							| 183 | 178 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑄  ∈  ℙ ) | 
						
							| 184 |  | prmz | ⊢ ( 𝑄  ∈  ℙ  →  𝑄  ∈  ℤ ) | 
						
							| 185 | 183 184 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑄  ∈  ℤ ) | 
						
							| 186 | 129 | nnzd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 2  ·  𝑢 )  ∈  ℤ ) | 
						
							| 187 |  | coprmdvds | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑄  ∈  ℤ  ∧  ( 2  ·  𝑢 )  ∈  ℤ )  →  ( ( 𝑃  ∥  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∧  ( 𝑃  gcd  𝑄 )  =  1 )  →  𝑃  ∥  ( 2  ·  𝑢 ) ) ) | 
						
							| 188 | 174 185 186 187 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑃  ∥  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∧  ( 𝑃  gcd  𝑄 )  =  1 )  →  𝑃  ∥  ( 2  ·  𝑢 ) ) ) | 
						
							| 189 | 182 188 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  ∥  ( 𝑄  ·  ( 2  ·  𝑢 ) )  →  𝑃  ∥  ( 2  ·  𝑢 ) ) ) | 
						
							| 190 | 177 189 | mtod | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ¬  𝑃  ∥  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 191 |  | nnz | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℤ ) | 
						
							| 192 | 191 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑦  ∈  ℤ ) | 
						
							| 193 |  | dvdsmul2 | ⊢ ( ( 𝑦  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  𝑃  ∥  ( 𝑦  ·  𝑃 ) ) | 
						
							| 194 | 192 174 193 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∥  ( 𝑦  ·  𝑃 ) ) | 
						
							| 195 |  | breq2 | ⊢ ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  =  ( 𝑦  ·  𝑃 )  →  ( 𝑃  ∥  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  𝑃  ∥  ( 𝑦  ·  𝑃 ) ) ) | 
						
							| 196 | 194 195 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  =  ( 𝑦  ·  𝑃 )  →  𝑃  ∥  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 197 | 196 | necon3bd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ¬  𝑃  ∥  ( 𝑄  ·  ( 2  ·  𝑢 ) )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ≠  ( 𝑦  ·  𝑃 ) ) ) | 
						
							| 198 | 190 197 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ≠  ( 𝑦  ·  𝑃 ) ) | 
						
							| 199 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑦  ∈  ℕ ) | 
						
							| 200 | 199 131 | nnmulcld | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ·  𝑃 )  ∈  ℕ ) | 
						
							| 201 | 200 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ·  𝑃 )  ∈  ℝ ) | 
						
							| 202 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑄  ∈  ℕ ) | 
						
							| 203 | 202 114 | nnmulcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∈  ℕ ) | 
						
							| 204 | 203 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∈  ℕ ) | 
						
							| 205 | 204 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∈  ℝ ) | 
						
							| 206 | 201 205 | ltlend | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  ( ( 𝑦  ·  𝑃 )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∧  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ≠  ( 𝑦  ·  𝑃 ) ) ) ) | 
						
							| 207 | 198 206 | mpbiran2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  ( 𝑦  ·  𝑃 )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 208 |  | nnre | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℝ ) | 
						
							| 209 | 208 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑦  ∈  ℝ ) | 
						
							| 210 | 131 | nngt0d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  0  <  𝑃 ) | 
						
							| 211 |  | lemuldiv | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  ( 𝑃  ∈  ℝ  ∧  0  <  𝑃 ) )  →  ( ( 𝑦  ·  𝑃 )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  𝑦  ≤  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 ) ) ) | 
						
							| 212 | 209 205 132 210 211 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  ≤  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  𝑦  ≤  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 ) ) ) | 
						
							| 213 | 202 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑄  ∈  ℕ ) | 
						
							| 214 | 213 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑄  ∈  ℂ ) | 
						
							| 215 | 129 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 2  ·  𝑢 )  ∈  ℂ ) | 
						
							| 216 | 131 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℂ ) | 
						
							| 217 | 131 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ≠  0 ) | 
						
							| 218 | 214 215 216 217 | div23d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 )  =  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 219 | 218 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ≤  ( ( 𝑄  ·  ( 2  ·  𝑢 ) )  /  𝑃 )  ↔  𝑦  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 220 | 207 212 219 | 3bitrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  𝑦  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 221 | 213 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑄  ∈  ℝ ) | 
						
							| 222 | 213 | nngt0d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  0  <  𝑄 ) | 
						
							| 223 |  | ltmul2 | ⊢ ( ( ( 2  ·  𝑢 )  ∈  ℝ  ∧  ( 𝑃  /  2 )  ∈  ℝ  ∧  ( 𝑄  ∈  ℝ  ∧  0  <  𝑄 ) )  →  ( ( 2  ·  𝑢 )  <  ( 𝑃  /  2 )  ↔  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  ·  ( 𝑃  /  2 ) ) ) ) | 
						
							| 224 | 130 133 221 222 223 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 2  ·  𝑢 )  <  ( 𝑃  /  2 )  ↔  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  ·  ( 𝑃  /  2 ) ) ) ) | 
						
							| 225 | 164 224 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( 𝑄  ·  ( 𝑃  /  2 ) ) ) | 
						
							| 226 |  | 2cnd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 227 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 228 | 227 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  2  ≠  0 ) | 
						
							| 229 |  | divass | ⊢ ( ( 𝑄  ∈  ℂ  ∧  𝑃  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( 𝑄  ·  𝑃 )  /  2 )  =  ( 𝑄  ·  ( 𝑃  /  2 ) ) ) | 
						
							| 230 |  | div23 | ⊢ ( ( 𝑄  ∈  ℂ  ∧  𝑃  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( 𝑄  ·  𝑃 )  /  2 )  =  ( ( 𝑄  /  2 )  ·  𝑃 ) ) | 
						
							| 231 | 229 230 | eqtr3d | ⊢ ( ( 𝑄  ∈  ℂ  ∧  𝑃  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( 𝑄  ·  ( 𝑃  /  2 ) )  =  ( ( 𝑄  /  2 )  ·  𝑃 ) ) | 
						
							| 232 | 214 216 226 228 231 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  ·  ( 𝑃  /  2 ) )  =  ( ( 𝑄  /  2 )  ·  𝑃 ) ) | 
						
							| 233 | 225 232 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( ( 𝑄  /  2 )  ·  𝑃 ) ) | 
						
							| 234 | 221 | rehalfcld | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  /  2 )  ∈  ℝ ) | 
						
							| 235 | 234 132 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  /  2 )  ·  𝑃 )  ∈  ℝ ) | 
						
							| 236 |  | lttr | ⊢ ( ( ( 𝑦  ·  𝑃 )  ∈  ℝ  ∧  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  ( ( 𝑄  /  2 )  ·  𝑃 )  ∈  ℝ )  →  ( ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∧  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( ( 𝑄  /  2 )  ·  𝑃 ) )  →  ( 𝑦  ·  𝑃 )  <  ( ( 𝑄  /  2 )  ·  𝑃 ) ) ) | 
						
							| 237 | 201 205 235 236 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ∧  ( 𝑄  ·  ( 2  ·  𝑢 ) )  <  ( ( 𝑄  /  2 )  ·  𝑃 ) )  →  ( 𝑦  ·  𝑃 )  <  ( ( 𝑄  /  2 )  ·  𝑃 ) ) ) | 
						
							| 238 | 233 237 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  →  ( 𝑦  ·  𝑃 )  <  ( ( 𝑄  /  2 )  ·  𝑃 ) ) ) | 
						
							| 239 |  | ltmul1 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝑄  /  2 )  ∈  ℝ  ∧  ( 𝑃  ∈  ℝ  ∧  0  <  𝑃 ) )  →  ( 𝑦  <  ( 𝑄  /  2 )  ↔  ( 𝑦  ·  𝑃 )  <  ( ( 𝑄  /  2 )  ·  𝑃 ) ) ) | 
						
							| 240 | 209 234 132 210 239 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  <  ( 𝑄  /  2 )  ↔  ( 𝑦  ·  𝑃 )  <  ( ( 𝑄  /  2 )  ·  𝑃 ) ) ) | 
						
							| 241 | 238 240 | sylibrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  →  𝑦  <  ( 𝑄  /  2 ) ) ) | 
						
							| 242 |  | peano2rem | ⊢ ( 𝑄  ∈  ℝ  →  ( 𝑄  −  1 )  ∈  ℝ ) | 
						
							| 243 | 221 242 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  −  1 )  ∈  ℝ ) | 
						
							| 244 | 243 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  −  1 )  ∈  ℂ ) | 
						
							| 245 | 214 244 226 228 | divsubdird | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  −  ( 𝑄  −  1 ) )  /  2 )  =  ( ( 𝑄  /  2 )  −  ( ( 𝑄  −  1 )  /  2 ) ) ) | 
						
							| 246 | 5 | oveq2i | ⊢ ( ( 𝑄  /  2 )  −  𝑁 )  =  ( ( 𝑄  /  2 )  −  ( ( 𝑄  −  1 )  /  2 ) ) | 
						
							| 247 | 245 246 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  −  ( 𝑄  −  1 ) )  /  2 )  =  ( ( 𝑄  /  2 )  −  𝑁 ) ) | 
						
							| 248 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 249 |  | nncan | ⊢ ( ( 𝑄  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝑄  −  ( 𝑄  −  1 ) )  =  1 ) | 
						
							| 250 | 214 248 249 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  −  ( 𝑄  −  1 ) )  =  1 ) | 
						
							| 251 | 250 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  −  ( 𝑄  −  1 ) )  /  2 )  =  ( 1  /  2 ) ) | 
						
							| 252 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 253 | 251 252 | eqbrtrdi | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  −  ( 𝑄  −  1 ) )  /  2 )  <  1 ) | 
						
							| 254 | 247 253 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑄  /  2 )  −  𝑁 )  <  1 ) | 
						
							| 255 | 2 5 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 256 | 255 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 257 | 256 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 258 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 259 | 234 257 258 | ltsubadd2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( ( 𝑄  /  2 )  −  𝑁 )  <  1  ↔  ( 𝑄  /  2 )  <  ( 𝑁  +  1 ) ) ) | 
						
							| 260 | 254 259 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑄  /  2 )  <  ( 𝑁  +  1 ) ) | 
						
							| 261 |  | peano2re | ⊢ ( 𝑁  ∈  ℝ  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 262 | 257 261 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑁  +  1 )  ∈  ℝ ) | 
						
							| 263 |  | lttr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  ( 𝑄  /  2 )  ∈  ℝ  ∧  ( 𝑁  +  1 )  ∈  ℝ )  →  ( ( 𝑦  <  ( 𝑄  /  2 )  ∧  ( 𝑄  /  2 )  <  ( 𝑁  +  1 ) )  →  𝑦  <  ( 𝑁  +  1 ) ) ) | 
						
							| 264 | 209 234 262 263 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  <  ( 𝑄  /  2 )  ∧  ( 𝑄  /  2 )  <  ( 𝑁  +  1 ) )  →  𝑦  <  ( 𝑁  +  1 ) ) ) | 
						
							| 265 | 260 264 | mpan2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  <  ( 𝑄  /  2 )  →  𝑦  <  ( 𝑁  +  1 ) ) ) | 
						
							| 266 | 241 265 | syld | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  →  𝑦  <  ( 𝑁  +  1 ) ) ) | 
						
							| 267 |  | nnleltp1 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑦  ≤  𝑁  ↔  𝑦  <  ( 𝑁  +  1 ) ) ) | 
						
							| 268 | 199 256 267 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ≤  𝑁  ↔  𝑦  <  ( 𝑁  +  1 ) ) ) | 
						
							| 269 | 266 268 | sylibrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  →  𝑦  ≤  𝑁 ) ) | 
						
							| 270 | 269 | pm4.71rd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) )  ↔  ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 271 | 92 67 | syldan | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ ) | 
						
							| 272 |  | flge | ⊢ ( ( ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ∈  ℝ  ∧  𝑦  ∈  ℤ )  →  ( 𝑦  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ↔  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 273 | 271 191 272 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑦  ≤  ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) )  ↔  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 274 | 220 270 273 | 3bitr3d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) )  ↔  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 275 | 274 | pm5.32da | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ( 𝑦  ∈  ℕ  ∧  ( 𝑦  ≤  𝑁  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 276 | 128 275 | bitrid | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ( ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 277 | 276 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( ( ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 278 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  𝑥  =  ( 2  ·  𝑢 ) ) | 
						
							| 279 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 280 | 114 279 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 2  ·  𝑢 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 281 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 282 |  | elfz5 | ⊢ ( ( ( 2  ·  𝑢 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑀  ∈  ℤ )  →  ( ( 2  ·  𝑢 )  ∈  ( 1 ... 𝑀 )  ↔  ( 2  ·  𝑢 )  ≤  𝑀 ) ) | 
						
							| 283 | 280 281 282 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ( 2  ·  𝑢 )  ∈  ( 1 ... 𝑀 )  ↔  ( 2  ·  𝑢 )  ≤  𝑀 ) ) | 
						
							| 284 | 153 283 | mpbird | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 2  ·  𝑢 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 285 | 284 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( 2  ·  𝑢 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 286 | 278 285 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  𝑥  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 287 | 286 | biantrurd | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 288 | 255 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 289 | 288 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 290 |  | fznn | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 ) ) ) | 
						
							| 291 | 289 290 | syl | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 ) ) ) | 
						
							| 292 | 287 291 | bitr3d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 ) ) ) | 
						
							| 293 |  | oveq1 | ⊢ ( 𝑥  =  ( 2  ·  𝑢 )  →  ( 𝑥  ·  𝑄 )  =  ( ( 2  ·  𝑢 )  ·  𝑄 ) ) | 
						
							| 294 | 114 | nncnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 2  ·  𝑢 )  ∈  ℂ ) | 
						
							| 295 | 202 | nncnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑄  ∈  ℂ ) | 
						
							| 296 | 294 295 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ( 2  ·  𝑢 )  ·  𝑄 )  =  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 297 | 293 296 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( 𝑥  ·  𝑄 )  =  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) | 
						
							| 298 | 297 | breq2d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 )  ↔  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 299 | 292 298 | anbi12d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) )  ↔  ( ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  𝑁 )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑄  ·  ( 2  ·  𝑢 ) ) ) ) ) | 
						
							| 300 | 271 | flcld | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ ) | 
						
							| 301 |  | fznn | ⊢ ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℤ  →  ( 𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 302 | 300 301 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 303 | 302 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( 𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ↔  ( 𝑦  ∈  ℕ  ∧  𝑦  ≤  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 304 | 277 299 303 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( ( ( 𝑥  ∈  ( 1 ... 𝑀 )  ∧  𝑦  ∈  ( 1 ... 𝑁 ) )  ∧  ( 𝑦  ·  𝑃 )  <  ( 𝑥  ·  𝑄 ) )  ↔  𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 305 | 127 304 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  ∧  𝑥  =  ( 2  ·  𝑢 ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑆  ↔  𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 306 | 305 | pm5.32da | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ( 𝑥  =  ( 2  ·  𝑢 )  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝑆 )  ↔  ( 𝑥  =  ( 2  ·  𝑢 )  ∧  𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 307 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 308 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 309 | 307 308 | op1std | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 1st  ‘ 𝑧 )  =  𝑥 ) | 
						
							| 310 | 309 | eqeq2d | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  ↔  ( 2  ·  𝑢 )  =  𝑥 ) ) | 
						
							| 311 |  | eqcom | ⊢ ( ( 2  ·  𝑢 )  =  𝑥  ↔  𝑥  =  ( 2  ·  𝑢 ) ) | 
						
							| 312 | 310 311 | bitrdi | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  ↔  𝑥  =  ( 2  ·  𝑢 ) ) ) | 
						
							| 313 | 312 | elrab | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ↔  ( 〈 𝑥 ,  𝑦 〉  ∈  𝑆  ∧  𝑥  =  ( 2  ·  𝑢 ) ) ) | 
						
							| 314 | 313 | biancomi | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ↔  ( 𝑥  =  ( 2  ·  𝑢 )  ∧  〈 𝑥 ,  𝑦 〉  ∈  𝑆 ) ) | 
						
							| 315 |  | opelxp | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ↔  ( 𝑥  ∈  { ( 2  ·  𝑢 ) }  ∧  𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 316 |  | velsn | ⊢ ( 𝑥  ∈  { ( 2  ·  𝑢 ) }  ↔  𝑥  =  ( 2  ·  𝑢 ) ) | 
						
							| 317 | 316 | anbi1i | ⊢ ( ( 𝑥  ∈  { ( 2  ·  𝑢 ) }  ∧  𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ↔  ( 𝑥  =  ( 2  ·  𝑢 )  ∧  𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 318 | 315 317 | bitri | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  ↔  ( 𝑥  =  ( 2  ·  𝑢 )  ∧  𝑦  ∈  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 319 | 306 314 318 | 3bitr4g | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( 〈 𝑥 ,  𝑦 〉  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ↔  〈 𝑥 ,  𝑦 〉  ∈  ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) ) | 
						
							| 320 | 123 124 319 | eqrelrdv | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  =  ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 321 | 320 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  =  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) | 
						
							| 322 | 321 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ♯ ‘ ( { ( 2  ·  𝑢 ) }  ×  ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) )  =  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 323 |  | hashfz1 | ⊢ ( ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  =  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 324 | 93 323 | syl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  =  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) | 
						
							| 325 | 119 322 324 | 3eqtr3rd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  =  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 326 | 325 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  =  Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 327 | 102 | adantr | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑆  ∈  Fin ) | 
						
							| 328 |  | ssfi | ⊢ ( ( 𝑆  ∈  Fin  ∧  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ⊆  𝑆 )  →  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ∈  Fin ) | 
						
							| 329 | 327 120 328 | sylancl | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ∈  Fin ) | 
						
							| 330 |  | fveq2 | ⊢ ( 𝑧  =  𝑣  →  ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑣 ) ) | 
						
							| 331 | 330 | eqeq2d | ⊢ ( 𝑧  =  𝑣  →  ( ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  ↔  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 332 | 331 | elrab | ⊢ ( 𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  ↔  ( 𝑣  ∈  𝑆  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑣 ) ) ) | 
						
							| 333 | 332 | simprbi | ⊢ ( 𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  →  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑣 ) ) | 
						
							| 334 | 333 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) )  →  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑣 ) ) | 
						
							| 335 | 334 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) )  →  ( ( 2  ·  𝑢 )  /  2 )  =  ( ( 1st  ‘ 𝑣 )  /  2 ) ) | 
						
							| 336 | 145 | nncnd | ⊢ ( ( 𝜑  ∧  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) )  →  𝑢  ∈  ℂ ) | 
						
							| 337 | 336 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) )  →  𝑢  ∈  ℂ ) | 
						
							| 338 |  | 2cnd | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) )  →  2  ∈  ℂ ) | 
						
							| 339 | 227 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) )  →  2  ≠  0 ) | 
						
							| 340 | 337 338 339 | divcan3d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) )  →  ( ( 2  ·  𝑢 )  /  2 )  =  𝑢 ) | 
						
							| 341 | 335 340 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) )  →  ( ( 1st  ‘ 𝑣 )  /  2 )  =  𝑢 ) | 
						
							| 342 | 341 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ∀ 𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ( ( 1st  ‘ 𝑣 )  /  2 )  =  𝑢 ) | 
						
							| 343 |  | invdisj | ⊢ ( ∀ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ∀ 𝑣  ∈  { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ( ( 1st  ‘ 𝑣 )  /  2 )  =  𝑢  →  Disj  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) | 
						
							| 344 | 342 343 | syl | ⊢ ( 𝜑  →  Disj  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) | 
						
							| 345 | 89 329 344 | hashiun | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } )  =  Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 346 |  | iunrab | ⊢ ∪  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  =  { 𝑧  ∈  𝑆  ∣  ∃ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } | 
						
							| 347 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 348 |  | zcn | ⊢ ( 𝑢  ∈  ℤ  →  𝑢  ∈  ℂ ) | 
						
							| 349 | 348 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ℤ )  →  𝑢  ∈  ℂ ) | 
						
							| 350 |  | mulcom | ⊢ ( ( 2  ∈  ℂ  ∧  𝑢  ∈  ℂ )  →  ( 2  ·  𝑢 )  =  ( 𝑢  ·  2 ) ) | 
						
							| 351 | 347 349 350 | sylancr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ℤ )  →  ( 2  ·  𝑢 )  =  ( 𝑢  ·  2 ) ) | 
						
							| 352 | 351 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  𝑢  ∈  ℤ )  →  ( ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  ↔  ( 𝑢  ·  2 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 353 | 352 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ∃ 𝑢  ∈  ℤ ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  ↔  ∃ 𝑢  ∈  ℤ ( 𝑢  ·  2 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 354 | 139 | anim1i | ⊢ ( ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) )  →  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 355 | 354 | reximi2 | ⊢ ( ∃ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  →  ∃ 𝑢  ∈  ℤ ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) | 
						
							| 356 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) | 
						
							| 357 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝑆 ) | 
						
							| 358 | 100 357 | sselid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) ) | 
						
							| 359 |  | xp1st | ⊢ ( 𝑧  ∈  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) )  →  ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 360 | 358 359 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 361 | 360 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 362 |  | elfzle2 | ⊢ ( ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 )  →  ( 1st  ‘ 𝑧 )  ≤  𝑀 ) | 
						
							| 363 | 361 362 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 1st  ‘ 𝑧 )  ≤  𝑀 ) | 
						
							| 364 | 356 363 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  𝑢 )  ≤  𝑀 ) | 
						
							| 365 |  | zre | ⊢ ( 𝑢  ∈  ℤ  →  𝑢  ∈  ℝ ) | 
						
							| 366 | 365 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑢  ∈  ℝ ) | 
						
							| 367 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 368 | 147 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  2  ∈  ℝ ) | 
						
							| 369 | 149 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  0  <  2 ) | 
						
							| 370 | 366 367 368 369 151 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ( 2  ·  𝑢 )  ≤  𝑀  ↔  𝑢  ≤  ( 𝑀  /  2 ) ) ) | 
						
							| 371 | 364 370 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑢  ≤  ( 𝑀  /  2 ) ) | 
						
							| 372 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑀  /  2 )  ∈  ℝ ) | 
						
							| 373 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑢  ∈  ℤ ) | 
						
							| 374 | 372 373 141 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑢  ≤  ( 𝑀  /  2 )  ↔  𝑢  ≤  ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ) | 
						
							| 375 | 371 374 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑢  ≤  ( ⌊ ‘ ( 𝑀  /  2 ) ) ) | 
						
							| 376 |  | 2t0e0 | ⊢ ( 2  ·  0 )  =  0 | 
						
							| 377 |  | elfznn | ⊢ ( ( 1st  ‘ 𝑧 )  ∈  ( 1 ... 𝑀 )  →  ( 1st  ‘ 𝑧 )  ∈  ℕ ) | 
						
							| 378 | 361 377 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 1st  ‘ 𝑧 )  ∈  ℕ ) | 
						
							| 379 | 356 378 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  𝑢 )  ∈  ℕ ) | 
						
							| 380 | 379 | nngt0d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  0  <  ( 2  ·  𝑢 ) ) | 
						
							| 381 | 376 380 | eqbrtrid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 2  ·  0 )  <  ( 2  ·  𝑢 ) ) | 
						
							| 382 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  0  ∈  ℝ ) | 
						
							| 383 |  | ltmul2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑢  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 0  <  𝑢  ↔  ( 2  ·  0 )  <  ( 2  ·  𝑢 ) ) ) | 
						
							| 384 | 382 366 368 369 383 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 0  <  𝑢  ↔  ( 2  ·  0 )  <  ( 2  ·  𝑢 ) ) ) | 
						
							| 385 | 381 384 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  0  <  𝑢 ) | 
						
							| 386 |  | elnnz | ⊢ ( 𝑢  ∈  ℕ  ↔  ( 𝑢  ∈  ℤ  ∧  0  <  𝑢 ) ) | 
						
							| 387 | 373 385 386 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑢  ∈  ℕ ) | 
						
							| 388 | 387 279 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑢  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 389 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℤ ) | 
						
							| 390 |  | elfz5 | ⊢ ( ( 𝑢  ∈  ( ℤ≥ ‘ 1 )  ∧  ( ⌊ ‘ ( 𝑀  /  2 ) )  ∈  ℤ )  →  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ↔  𝑢  ≤  ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ) | 
						
							| 391 | 388 389 390 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ↔  𝑢  ≤  ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ) | 
						
							| 392 | 375 391 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ) | 
						
							| 393 | 392 356 | jca | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  ∧  ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) )  →  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 394 | 393 | ex | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ( 𝑢  ∈  ℤ  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) )  →  ( 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) )  ∧  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) ) ) | 
						
							| 395 | 394 | reximdv2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ∃ 𝑢  ∈  ℤ ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  →  ∃ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 396 | 355 395 | impbid2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ∃ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  ↔  ∃ 𝑢  ∈  ℤ ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 397 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 398 | 360 | elfzelzd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( 1st  ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 399 |  | divides | ⊢ ( ( 2  ∈  ℤ  ∧  ( 1st  ‘ 𝑧 )  ∈  ℤ )  →  ( 2  ∥  ( 1st  ‘ 𝑧 )  ↔  ∃ 𝑢  ∈  ℤ ( 𝑢  ·  2 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 400 | 397 398 399 | sylancr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( 2  ∥  ( 1st  ‘ 𝑧 )  ↔  ∃ 𝑢  ∈  ℤ ( 𝑢  ·  2 )  =  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 401 | 353 396 400 | 3bitr4d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝑆 )  →  ( ∃ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 )  ↔  2  ∥  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 402 | 401 | rabbidva | ⊢ ( 𝜑  →  { 𝑧  ∈  𝑆  ∣  ∃ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  =  { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } ) | 
						
							| 403 | 346 402 | eqtrid | ⊢ ( 𝜑  →  ∪  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) }  =  { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } ) | 
						
							| 404 | 403 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ∪  𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) { 𝑧  ∈  𝑆  ∣  ( 2  ·  𝑢 )  =  ( 1st  ‘ 𝑧 ) } )  =  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 405 | 326 345 404 | 3eqtr2d | ⊢ ( 𝜑  →  Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  =  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) | 
						
							| 406 | 405 | oveq2d | ⊢ ( 𝜑  →  ( - 1 ↑ Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) | 
						
							| 407 | 1 2 3 4 5 6 | lgsquadlem1 | ⊢ ( 𝜑  →  ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  =  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) | 
						
							| 408 | 406 407 | oveq12d | ⊢ ( 𝜑  →  ( ( - 1 ↑ Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ·  ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  =  ( ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  ·  ( - 1 ↑ ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) ) | 
						
							| 409 | 113 408 | eqtr4d | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( ( - 1 ↑ Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) )  ·  ( - 1 ↑ Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) ) ) | 
						
							| 410 |  | inrab | ⊢ ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∩  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  =  { 𝑧  ∈  𝑆  ∣  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∧  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) } | 
						
							| 411 |  | pm3.24 | ⊢ ¬  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∧  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) | 
						
							| 412 | 411 | a1i | ⊢ ( 𝜑  →  ¬  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∧  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 413 | 412 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑆 ¬  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∧  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 414 |  | rabeq0 | ⊢ ( { 𝑧  ∈  𝑆  ∣  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∧  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) }  =  ∅  ↔  ∀ 𝑧  ∈  𝑆 ¬  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∧  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 415 | 413 414 | sylibr | ⊢ ( 𝜑  →  { 𝑧  ∈  𝑆  ∣  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∧  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) }  =  ∅ ) | 
						
							| 416 | 410 415 | eqtrid | ⊢ ( 𝜑  →  ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∩  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  =  ∅ ) | 
						
							| 417 |  | hashun | ⊢ ( ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin  ∧  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) }  ∈  Fin  ∧  ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∩  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  =  ∅ )  →  ( ♯ ‘ ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∪  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) | 
						
							| 418 | 110 105 416 417 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∪  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) ) | 
						
							| 419 |  | unrab | ⊢ ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∪  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  =  { 𝑧  ∈  𝑆  ∣  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∨  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) } | 
						
							| 420 |  | exmid | ⊢ ( 2  ∥  ( 1st  ‘ 𝑧 )  ∨  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) | 
						
							| 421 | 420 | rgenw | ⊢ ∀ 𝑧  ∈  𝑆 ( 2  ∥  ( 1st  ‘ 𝑧 )  ∨  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) | 
						
							| 422 |  | rabid2 | ⊢ ( 𝑆  =  { 𝑧  ∈  𝑆  ∣  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∨  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) }  ↔  ∀ 𝑧  ∈  𝑆 ( 2  ∥  ( 1st  ‘ 𝑧 )  ∨  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) ) | 
						
							| 423 | 421 422 | mpbir | ⊢ 𝑆  =  { 𝑧  ∈  𝑆  ∣  ( 2  ∥  ( 1st  ‘ 𝑧 )  ∨  ¬  2  ∥  ( 1st  ‘ 𝑧 ) ) } | 
						
							| 424 | 419 423 | eqtr4i | ⊢ ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∪  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } )  =  𝑆 | 
						
							| 425 | 424 | fveq2i | ⊢ ( ♯ ‘ ( { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) }  ∪  { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( ♯ ‘ 𝑆 ) | 
						
							| 426 | 418 425 | eqtr3di | ⊢ ( 𝜑  →  ( ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) )  =  ( ♯ ‘ 𝑆 ) ) | 
						
							| 427 | 426 | oveq2d | ⊢ ( 𝜑  →  ( - 1 ↑ ( ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  2  ∥  ( 1st  ‘ 𝑧 ) } )  +  ( ♯ ‘ { 𝑧  ∈  𝑆  ∣  ¬  2  ∥  ( 1st  ‘ 𝑧 ) } ) ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 428 | 95 409 427 | 3eqtr2d | ⊢ ( 𝜑  →  ( - 1 ↑ ( Σ 𝑢  ∈  ( 1 ... ( ⌊ ‘ ( 𝑀  /  2 ) ) ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) )  +  Σ 𝑢  ∈  ( ( ( ⌊ ‘ ( 𝑀  /  2 ) )  +  1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄  /  𝑃 )  ·  ( 2  ·  𝑢 ) ) ) ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 429 | 7 80 428 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑄  /L  𝑃 )  =  ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) |