| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgseisen.1 |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
| 2 |
|
lgseisen.2 |
⊢ ( 𝜑 → 𝑄 ∈ ( ℙ ∖ { 2 } ) ) |
| 3 |
|
lgseisen.3 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
| 4 |
|
lgsquad.4 |
⊢ 𝑀 = ( ( 𝑃 − 1 ) / 2 ) |
| 5 |
|
lgsquad.5 |
⊢ 𝑁 = ( ( 𝑄 − 1 ) / 2 ) |
| 6 |
|
lgsquad.6 |
⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } |
| 7 |
1 2 3
|
lgseisen |
⊢ ( 𝜑 → ( 𝑄 /L 𝑃 ) = ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 8 |
4
|
oveq2i |
⊢ ( 1 ... 𝑀 ) = ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) |
| 9 |
8
|
sumeq1i |
⊢ Σ 𝑢 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
| 10 |
1 4
|
gausslemma2dlem0b |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 11 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 12 |
11
|
rehalfcld |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ ) |
| 13 |
12
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ) |
| 14 |
13
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℝ ) |
| 15 |
14
|
ltp1d |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ) |
| 16 |
|
fzdisj |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) < ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ∅ ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ∅ ) |
| 18 |
10
|
nnrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 19 |
18
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑀 / 2 ) ∈ ℝ+ ) |
| 20 |
19
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 / 2 ) ) |
| 21 |
|
flge0nn0 |
⊢ ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 / 2 ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0 ) |
| 22 |
12 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0 ) |
| 23 |
10
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 24 |
|
rphalflt |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 / 2 ) < 𝑀 ) |
| 25 |
18 24
|
syl |
⊢ ( 𝜑 → ( 𝑀 / 2 ) < 𝑀 ) |
| 26 |
10
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 27 |
|
fllt |
⊢ ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 / 2 ) < 𝑀 ↔ ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 ) ) |
| 28 |
12 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 / 2 ) < 𝑀 ↔ ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 ) ) |
| 29 |
25 28
|
mpbid |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) < 𝑀 ) |
| 30 |
14 11 29
|
ltled |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ≤ 𝑀 ) |
| 31 |
|
elfz2nn0 |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ ( ⌊ ‘ ( 𝑀 / 2 ) ) ≤ 𝑀 ) ) |
| 32 |
22 23 30 31
|
syl3anbrc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ) |
| 33 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 34 |
23 33
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 35 |
|
elfzp12 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) ) |
| 36 |
34 35
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 0 ... 𝑀 ) ↔ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) ) |
| 37 |
32 36
|
mpbid |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) ) |
| 38 |
|
un0 |
⊢ ( ( 1 ... 𝑀 ) ∪ ∅ ) = ( 1 ... 𝑀 ) |
| 39 |
|
uncom |
⊢ ( ( 1 ... 𝑀 ) ∪ ∅ ) = ( ∅ ∪ ( 1 ... 𝑀 ) ) |
| 40 |
38 39
|
eqtr3i |
⊢ ( 1 ... 𝑀 ) = ( ∅ ∪ ( 1 ... 𝑀 ) ) |
| 41 |
|
oveq2 |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) = ( 1 ... 0 ) ) |
| 42 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 43 |
41 42
|
eqtrdi |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) = ∅ ) |
| 44 |
|
oveq1 |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) = ( 0 + 1 ) ) |
| 45 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 46 |
44 45
|
eqtrdi |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) = 1 ) |
| 47 |
46
|
oveq1d |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) ) |
| 48 |
43 47
|
uneq12d |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) = ( ∅ ∪ ( 1 ... 𝑀 ) ) ) |
| 49 |
40 48
|
eqtr4id |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
| 50 |
|
fzsplit |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( 1 ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
| 51 |
45
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑀 ) = ( 1 ... 𝑀 ) |
| 52 |
50 51
|
eleq2s |
⊢ ( ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
| 53 |
49 52
|
jaoi |
⊢ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) = 0 ∨ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ( ( 0 + 1 ) ... 𝑀 ) ) → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
| 54 |
37 53
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) = ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) ) |
| 55 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
| 56 |
2
|
gausslemma2dlem0a |
⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
| 57 |
56
|
nnred |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 58 |
1
|
gausslemma2dlem0a |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 59 |
57 58
|
nndivred |
⊢ ( 𝜑 → ( 𝑄 / 𝑃 ) ∈ ℝ ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 𝑄 / 𝑃 ) ∈ ℝ ) |
| 61 |
|
2nn |
⊢ 2 ∈ ℕ |
| 62 |
|
elfznn |
⊢ ( 𝑢 ∈ ( 1 ... 𝑀 ) → 𝑢 ∈ ℕ ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → 𝑢 ∈ ℕ ) |
| 64 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑢 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℕ ) |
| 65 |
61 63 64
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℕ ) |
| 66 |
65
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℝ ) |
| 67 |
60 66
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ) |
| 68 |
56
|
nnrpd |
⊢ ( 𝜑 → 𝑄 ∈ ℝ+ ) |
| 69 |
58
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
| 70 |
68 69
|
rpdivcld |
⊢ ( 𝜑 → ( 𝑄 / 𝑃 ) ∈ ℝ+ ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 𝑄 / 𝑃 ) ∈ ℝ+ ) |
| 72 |
65
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( 2 · 𝑢 ) ∈ ℝ+ ) |
| 73 |
71 72
|
rpmulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ+ ) |
| 74 |
73
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → 0 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
| 75 |
|
flge0nn0 |
⊢ ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
| 76 |
67 74 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
| 77 |
76
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℂ ) |
| 78 |
17 54 55 77
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 79 |
9 78
|
eqtr3id |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ( 𝑃 − 1 ) / 2 ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 81 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 82 |
81
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 83 |
|
fzfid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ∈ Fin ) |
| 84 |
|
ssun2 |
⊢ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) |
| 85 |
84 54
|
sseqtrrid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) ) |
| 86 |
85
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → 𝑢 ∈ ( 1 ... 𝑀 ) ) |
| 87 |
86 76
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
| 88 |
83 87
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
| 89 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∈ Fin ) |
| 90 |
|
ssun1 |
⊢ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ) |
| 91 |
90 54
|
sseqtrrid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ⊆ ( 1 ... 𝑀 ) ) |
| 92 |
91
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ( 1 ... 𝑀 ) ) |
| 93 |
92 76
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
| 94 |
89 93
|
fsumnn0cl |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 ) |
| 95 |
82 88 94
|
expaddd |
⊢ ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 96 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 97 |
|
xpfi |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) → ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
| 98 |
55 96 97
|
syl2anc |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ) |
| 99 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) |
| 100 |
6 99
|
eqsstri |
⊢ 𝑆 ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) |
| 101 |
|
ssfi |
⊢ ( ( ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ∈ Fin ∧ 𝑆 ⊆ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) → 𝑆 ∈ Fin ) |
| 102 |
98 100 101
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 103 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 |
| 104 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 ) → { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
| 105 |
102 103 104
|
sylancl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
| 106 |
|
hashcl |
⊢ ( { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
| 107 |
105 106
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
| 108 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 |
| 109 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ⊆ 𝑆 ) → { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
| 110 |
102 108 109
|
sylancl |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ) |
| 111 |
|
hashcl |
⊢ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
| 112 |
110 111
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ∈ ℕ0 ) |
| 113 |
82 107 112
|
expaddd |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
| 114 |
92 65
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ℕ ) |
| 115 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ Fin ) |
| 116 |
|
xpsnen2g |
⊢ ( ( ( 2 · 𝑢 ) ∈ ℕ ∧ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ∈ Fin ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 117 |
114 115 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 118 |
|
hasheni |
⊢ ( ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ≈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 119 |
117 118
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 120 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ⊆ 𝑆 |
| 121 |
6
|
relopabiv |
⊢ Rel 𝑆 |
| 122 |
|
relss |
⊢ ( { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ⊆ 𝑆 → ( Rel 𝑆 → Rel { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
| 123 |
120 121 122
|
mp2 |
⊢ Rel { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } |
| 124 |
|
relxp |
⊢ Rel ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 125 |
6
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ) |
| 126 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) } ↔ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ) |
| 127 |
125 126
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ) |
| 128 |
|
anass |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ) |
| 129 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℕ ) |
| 130 |
129
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℝ ) |
| 131 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
| 132 |
131
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 133 |
132
|
rehalfcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 / 2 ) ∈ ℝ ) |
| 134 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑀 ∈ ℝ ) |
| 135 |
134
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 136 |
|
elfzle2 |
⊢ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) |
| 137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) |
| 138 |
134
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑀 / 2 ) ∈ ℝ ) |
| 139 |
|
elfzelz |
⊢ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ∈ ℤ ) |
| 140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℤ ) |
| 141 |
|
flge |
⊢ ( ( ( 𝑀 / 2 ) ∈ ℝ ∧ 𝑢 ∈ ℤ ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
| 142 |
138 140 141
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
| 143 |
137 142
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ≤ ( 𝑀 / 2 ) ) |
| 144 |
|
elfznn |
⊢ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) → 𝑢 ∈ ℕ ) |
| 145 |
144
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℕ ) |
| 146 |
145
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℝ ) |
| 147 |
|
2re |
⊢ 2 ∈ ℝ |
| 148 |
147
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 2 ∈ ℝ ) |
| 149 |
|
2pos |
⊢ 0 < 2 |
| 150 |
149
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 0 < 2 ) |
| 151 |
|
lemuldiv2 |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀 ↔ 𝑢 ≤ ( 𝑀 / 2 ) ) ) |
| 152 |
146 134 148 150 151
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀 ↔ 𝑢 ≤ ( 𝑀 / 2 ) ) ) |
| 153 |
143 152
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ≤ 𝑀 ) |
| 154 |
153
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ≤ 𝑀 ) |
| 155 |
132
|
ltm1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 − 1 ) < 𝑃 ) |
| 156 |
|
peano2rem |
⊢ ( 𝑃 ∈ ℝ → ( 𝑃 − 1 ) ∈ ℝ ) |
| 157 |
132 156
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 − 1 ) ∈ ℝ ) |
| 158 |
147
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ∈ ℝ ) |
| 159 |
149
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 2 ) |
| 160 |
|
ltdiv1 |
⊢ ( ( ( 𝑃 − 1 ) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑃 − 1 ) < 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) ) ) |
| 161 |
157 132 158 159 160
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 − 1 ) < 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) ) ) |
| 162 |
155 161
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 − 1 ) / 2 ) < ( 𝑃 / 2 ) ) |
| 163 |
4 162
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑀 < ( 𝑃 / 2 ) ) |
| 164 |
130 135 133 154 163
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) < ( 𝑃 / 2 ) ) |
| 165 |
131
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℝ+ ) |
| 166 |
|
rphalflt |
⊢ ( 𝑃 ∈ ℝ+ → ( 𝑃 / 2 ) < 𝑃 ) |
| 167 |
165 166
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 / 2 ) < 𝑃 ) |
| 168 |
130 133 132 164 167
|
lttrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) < 𝑃 ) |
| 169 |
130 132
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑢 ) < 𝑃 ↔ ¬ 𝑃 ≤ ( 2 · 𝑢 ) ) ) |
| 170 |
168 169
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ≤ ( 2 · 𝑢 ) ) |
| 171 |
1
|
eldifad |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 172 |
171
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
| 173 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 174 |
172 173
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℤ ) |
| 175 |
|
dvdsle |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 2 · 𝑢 ) ∈ ℕ ) → ( 𝑃 ∥ ( 2 · 𝑢 ) → 𝑃 ≤ ( 2 · 𝑢 ) ) ) |
| 176 |
174 129 175
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ∥ ( 2 · 𝑢 ) → 𝑃 ≤ ( 2 · 𝑢 ) ) ) |
| 177 |
170 176
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 2 · 𝑢 ) ) |
| 178 |
2
|
eldifad |
⊢ ( 𝜑 → 𝑄 ∈ ℙ ) |
| 179 |
|
prmrp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ( 𝑃 gcd 𝑄 ) = 1 ↔ 𝑃 ≠ 𝑄 ) ) |
| 180 |
171 178 179
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 gcd 𝑄 ) = 1 ↔ 𝑃 ≠ 𝑄 ) ) |
| 181 |
3 180
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 gcd 𝑄 ) = 1 ) |
| 182 |
181
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 gcd 𝑄 ) = 1 ) |
| 183 |
178
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℙ ) |
| 184 |
|
prmz |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℤ ) |
| 185 |
183 184
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℤ ) |
| 186 |
129
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℤ ) |
| 187 |
|
coprmdvds |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ ( 2 · 𝑢 ) ∈ ℤ ) → ( ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∥ ( 2 · 𝑢 ) ) ) |
| 188 |
174 185 186 187
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∥ ( 2 · 𝑢 ) ) ) |
| 189 |
182 188
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑃 ∥ ( 2 · 𝑢 ) ) ) |
| 190 |
177 189
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ) |
| 191 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
| 192 |
191
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
| 193 |
|
dvdsmul2 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑃 ∥ ( 𝑦 · 𝑃 ) ) |
| 194 |
192 174 193
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∥ ( 𝑦 · 𝑃 ) ) |
| 195 |
|
breq2 |
⊢ ( ( 𝑄 · ( 2 · 𝑢 ) ) = ( 𝑦 · 𝑃 ) → ( 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑃 ∥ ( 𝑦 · 𝑃 ) ) ) |
| 196 |
194 195
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 · ( 2 · 𝑢 ) ) = ( 𝑦 · 𝑃 ) → 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) ) ) |
| 197 |
196
|
necon3bd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ¬ 𝑃 ∥ ( 𝑄 · ( 2 · 𝑢 ) ) → ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) ) ) |
| 198 |
190 197
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) ) |
| 199 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℕ ) |
| 200 |
199 131
|
nnmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 · 𝑃 ) ∈ ℕ ) |
| 201 |
200
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 · 𝑃 ) ∈ ℝ ) |
| 202 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑄 ∈ ℕ ) |
| 203 |
202 114
|
nnmulcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℕ ) |
| 204 |
203
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℕ ) |
| 205 |
204
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ) |
| 206 |
201 205
|
ltlend |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ≠ ( 𝑦 · 𝑃 ) ) ) ) |
| 207 |
198 206
|
mpbiran2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ) ) |
| 208 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
| 209 |
208
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℝ ) |
| 210 |
131
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 𝑃 ) |
| 211 |
|
lemuldiv |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) ) |
| 212 |
209 205 132 210 211
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) ≤ ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ) ) |
| 213 |
202
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℕ ) |
| 214 |
213
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℂ ) |
| 215 |
129
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 2 · 𝑢 ) ∈ ℂ ) |
| 216 |
131
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 217 |
131
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ≠ 0 ) |
| 218 |
214 215 216 217
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) = ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) |
| 219 |
218
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 𝑄 · ( 2 · 𝑢 ) ) / 𝑃 ) ↔ 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
| 220 |
207 212 219
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
| 221 |
213
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑄 ∈ ℝ ) |
| 222 |
213
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 0 < 𝑄 ) |
| 223 |
|
ltmul2 |
⊢ ( ( ( 2 · 𝑢 ) ∈ ℝ ∧ ( 𝑃 / 2 ) ∈ ℝ ∧ ( 𝑄 ∈ ℝ ∧ 0 < 𝑄 ) ) → ( ( 2 · 𝑢 ) < ( 𝑃 / 2 ) ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) ) ) |
| 224 |
130 133 221 222 223
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 2 · 𝑢 ) < ( 𝑃 / 2 ) ↔ ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) ) ) |
| 225 |
164 224
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) < ( 𝑄 · ( 𝑃 / 2 ) ) ) |
| 226 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ∈ ℂ ) |
| 227 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 228 |
227
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 2 ≠ 0 ) |
| 229 |
|
divass |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑄 · 𝑃 ) / 2 ) = ( 𝑄 · ( 𝑃 / 2 ) ) ) |
| 230 |
|
div23 |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑄 · 𝑃 ) / 2 ) = ( ( 𝑄 / 2 ) · 𝑃 ) ) |
| 231 |
229 230
|
eqtr3d |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 𝑄 · ( 𝑃 / 2 ) ) = ( ( 𝑄 / 2 ) · 𝑃 ) ) |
| 232 |
214 216 226 228 231
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 𝑃 / 2 ) ) = ( ( 𝑄 / 2 ) · 𝑃 ) ) |
| 233 |
225 232
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) |
| 234 |
221
|
rehalfcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 / 2 ) ∈ ℝ ) |
| 235 |
234 132
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 / 2 ) · 𝑃 ) ∈ ℝ ) |
| 236 |
|
lttr |
⊢ ( ( ( 𝑦 · 𝑃 ) ∈ ℝ ∧ ( 𝑄 · ( 2 · 𝑢 ) ) ∈ ℝ ∧ ( ( 𝑄 / 2 ) · 𝑃 ) ∈ ℝ ) → ( ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
| 237 |
201 205 235 236
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ∧ ( 𝑄 · ( 2 · 𝑢 ) ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
| 238 |
233 237
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
| 239 |
|
ltmul1 |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 / 2 ) ∈ ℝ ∧ ( 𝑃 ∈ ℝ ∧ 0 < 𝑃 ) ) → ( 𝑦 < ( 𝑄 / 2 ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
| 240 |
209 234 132 210 239
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < ( 𝑄 / 2 ) ↔ ( 𝑦 · 𝑃 ) < ( ( 𝑄 / 2 ) · 𝑃 ) ) ) |
| 241 |
238 240
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦 < ( 𝑄 / 2 ) ) ) |
| 242 |
|
peano2rem |
⊢ ( 𝑄 ∈ ℝ → ( 𝑄 − 1 ) ∈ ℝ ) |
| 243 |
221 242
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − 1 ) ∈ ℝ ) |
| 244 |
243
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − 1 ) ∈ ℂ ) |
| 245 |
214 244 226 228
|
divsubdird |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( ( 𝑄 / 2 ) − ( ( 𝑄 − 1 ) / 2 ) ) ) |
| 246 |
5
|
oveq2i |
⊢ ( ( 𝑄 / 2 ) − 𝑁 ) = ( ( 𝑄 / 2 ) − ( ( 𝑄 − 1 ) / 2 ) ) |
| 247 |
245 246
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( ( 𝑄 / 2 ) − 𝑁 ) ) |
| 248 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 249 |
|
nncan |
⊢ ( ( 𝑄 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑄 − ( 𝑄 − 1 ) ) = 1 ) |
| 250 |
214 248 249
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 − ( 𝑄 − 1 ) ) = 1 ) |
| 251 |
250
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) = ( 1 / 2 ) ) |
| 252 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 253 |
251 252
|
eqbrtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 − ( 𝑄 − 1 ) ) / 2 ) < 1 ) |
| 254 |
247 253
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑄 / 2 ) − 𝑁 ) < 1 ) |
| 255 |
2 5
|
gausslemma2dlem0b |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 256 |
255
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 257 |
256
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 258 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → 1 ∈ ℝ ) |
| 259 |
234 257 258
|
ltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑄 / 2 ) − 𝑁 ) < 1 ↔ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) ) |
| 260 |
254 259
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) |
| 261 |
|
peano2re |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 262 |
257 261
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑁 + 1 ) ∈ ℝ ) |
| 263 |
|
lttr |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑄 / 2 ) ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℝ ) → ( ( 𝑦 < ( 𝑄 / 2 ) ∧ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) → 𝑦 < ( 𝑁 + 1 ) ) ) |
| 264 |
209 234 262 263
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 < ( 𝑄 / 2 ) ∧ ( 𝑄 / 2 ) < ( 𝑁 + 1 ) ) → 𝑦 < ( 𝑁 + 1 ) ) ) |
| 265 |
260 264
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < ( 𝑄 / 2 ) → 𝑦 < ( 𝑁 + 1 ) ) ) |
| 266 |
241 265
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦 < ( 𝑁 + 1 ) ) ) |
| 267 |
|
nnleltp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑦 ≤ 𝑁 ↔ 𝑦 < ( 𝑁 + 1 ) ) ) |
| 268 |
199 256 267
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ 𝑁 ↔ 𝑦 < ( 𝑁 + 1 ) ) ) |
| 269 |
266 268
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) → 𝑦 ≤ 𝑁 ) ) |
| 270 |
269
|
pm4.71rd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ↔ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ) |
| 271 |
92 67
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ) |
| 272 |
|
flge |
⊢ ( ( ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 273 |
271 191 272
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ≤ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 274 |
220 270 273
|
3bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) |
| 275 |
274
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑦 ∈ ℕ ∧ ( 𝑦 ≤ 𝑁 ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 276 |
128 275
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 277 |
276
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 278 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑥 = ( 2 · 𝑢 ) ) |
| 279 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 280 |
114 279
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 281 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑀 ∈ ℤ ) |
| 282 |
|
elfz5 |
⊢ ( ( ( 2 · 𝑢 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → ( ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ↔ ( 2 · 𝑢 ) ≤ 𝑀 ) ) |
| 283 |
280 281 282
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ↔ ( 2 · 𝑢 ) ≤ 𝑀 ) ) |
| 284 |
153 283
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ) |
| 285 |
284
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 2 · 𝑢 ) ∈ ( 1 ... 𝑀 ) ) |
| 286 |
278 285
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑥 ∈ ( 1 ... 𝑀 ) ) |
| 287 |
286
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ) ) |
| 288 |
255
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 289 |
288
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → 𝑁 ∈ ℤ ) |
| 290 |
|
fznn |
⊢ ( 𝑁 ∈ ℤ → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
| 291 |
289 290
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
| 292 |
287 291
|
bitr3d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ) ) |
| 293 |
|
oveq1 |
⊢ ( 𝑥 = ( 2 · 𝑢 ) → ( 𝑥 · 𝑄 ) = ( ( 2 · 𝑢 ) · 𝑄 ) ) |
| 294 |
114
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 2 · 𝑢 ) ∈ ℂ ) |
| 295 |
202
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑄 ∈ ℂ ) |
| 296 |
294 295
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 2 · 𝑢 ) · 𝑄 ) = ( 𝑄 · ( 2 · 𝑢 ) ) ) |
| 297 |
293 296
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑥 · 𝑄 ) = ( 𝑄 · ( 2 · 𝑢 ) ) ) |
| 298 |
297
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ↔ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) |
| 299 |
292 298
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ ( ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁 ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑄 · ( 2 · 𝑢 ) ) ) ) ) |
| 300 |
271
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ ) |
| 301 |
|
fznn |
⊢ ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℤ → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 302 |
300 301
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 303 |
302
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ↔ ( 𝑦 ∈ ℕ ∧ 𝑦 ≤ ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 304 |
277 299 303
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( ( ( 𝑥 ∈ ( 1 ... 𝑀 ) ∧ 𝑦 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑦 · 𝑃 ) < ( 𝑥 · 𝑄 ) ) ↔ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 305 |
127 304
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) ∧ 𝑥 = ( 2 · 𝑢 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ↔ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 306 |
305
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ( 𝑥 = ( 2 · 𝑢 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
| 307 |
|
vex |
⊢ 𝑥 ∈ V |
| 308 |
|
vex |
⊢ 𝑦 ∈ V |
| 309 |
307 308
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 310 |
309
|
eqeq2d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ( 2 · 𝑢 ) = 𝑥 ) ) |
| 311 |
|
eqcom |
⊢ ( ( 2 · 𝑢 ) = 𝑥 ↔ 𝑥 = ( 2 · 𝑢 ) ) |
| 312 |
310 311
|
bitrdi |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ 𝑥 = ( 2 · 𝑢 ) ) ) |
| 313 |
312
|
elrab |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ∧ 𝑥 = ( 2 · 𝑢 ) ) ) |
| 314 |
313
|
biancomi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝑆 ) ) |
| 315 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 ∈ { ( 2 · 𝑢 ) } ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 316 |
|
velsn |
⊢ ( 𝑥 ∈ { ( 2 · 𝑢 ) } ↔ 𝑥 = ( 2 · 𝑢 ) ) |
| 317 |
316
|
anbi1i |
⊢ ( ( 𝑥 ∈ { ( 2 · 𝑢 ) } ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 318 |
315 317
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ↔ ( 𝑥 = ( 2 · 𝑢 ) ∧ 𝑦 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 319 |
306 314 318
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ↔ 〈 𝑥 , 𝑦 〉 ∈ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) ) |
| 320 |
123 124 319
|
eqrelrdv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } = ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 321 |
320
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) |
| 322 |
321
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( { ( 2 · 𝑢 ) } × ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
| 323 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
| 324 |
93 323
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) |
| 325 |
119 322 324
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
| 326 |
325
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
| 327 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑆 ∈ Fin ) |
| 328 |
|
ssfi |
⊢ ( ( 𝑆 ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ⊆ 𝑆 ) → { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ∈ Fin ) |
| 329 |
327 120 328
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ∈ Fin ) |
| 330 |
|
fveq2 |
⊢ ( 𝑧 = 𝑣 → ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑣 ) ) |
| 331 |
330
|
eqeq2d |
⊢ ( 𝑧 = 𝑣 → ( ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ( 2 · 𝑢 ) = ( 1st ‘ 𝑣 ) ) ) |
| 332 |
331
|
elrab |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ↔ ( 𝑣 ∈ 𝑆 ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑣 ) ) ) |
| 333 |
332
|
simprbi |
⊢ ( 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } → ( 2 · 𝑢 ) = ( 1st ‘ 𝑣 ) ) |
| 334 |
333
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → ( 2 · 𝑢 ) = ( 1st ‘ 𝑣 ) ) |
| 335 |
334
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → ( ( 2 · 𝑢 ) / 2 ) = ( ( 1st ‘ 𝑣 ) / 2 ) ) |
| 336 |
145
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) → 𝑢 ∈ ℂ ) |
| 337 |
336
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → 𝑢 ∈ ℂ ) |
| 338 |
|
2cnd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → 2 ∈ ℂ ) |
| 339 |
227
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → 2 ≠ 0 ) |
| 340 |
337 338 339
|
divcan3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → ( ( 2 · 𝑢 ) / 2 ) = 𝑢 ) |
| 341 |
335 340
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) → ( ( 1st ‘ 𝑣 ) / 2 ) = 𝑢 ) |
| 342 |
341
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∀ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ( ( 1st ‘ 𝑣 ) / 2 ) = 𝑢 ) |
| 343 |
|
invdisj |
⊢ ( ∀ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∀ 𝑣 ∈ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ( ( 1st ‘ 𝑣 ) / 2 ) = 𝑢 → Disj 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) |
| 344 |
342 343
|
syl |
⊢ ( 𝜑 → Disj 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) |
| 345 |
89 329 344
|
hashiun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) = Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) ) |
| 346 |
|
iunrab |
⊢ ∪ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } = { 𝑧 ∈ 𝑆 ∣ ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } |
| 347 |
|
2cn |
⊢ 2 ∈ ℂ |
| 348 |
|
zcn |
⊢ ( 𝑢 ∈ ℤ → 𝑢 ∈ ℂ ) |
| 349 |
348
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ℤ ) → 𝑢 ∈ ℂ ) |
| 350 |
|
mulcom |
⊢ ( ( 2 ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( 2 · 𝑢 ) = ( 𝑢 · 2 ) ) |
| 351 |
347 349 350
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ℤ ) → ( 2 · 𝑢 ) = ( 𝑢 · 2 ) ) |
| 352 |
351
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑢 ∈ ℤ ) → ( ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ( 𝑢 · 2 ) = ( 1st ‘ 𝑧 ) ) ) |
| 353 |
352
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st ‘ 𝑧 ) ) ) |
| 354 |
139
|
anim1i |
⊢ ( ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) → ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) |
| 355 |
354
|
reximi2 |
⊢ ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) → ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) |
| 356 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) |
| 357 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) |
| 358 |
100 357
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) |
| 359 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
| 360 |
358 359
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
| 361 |
360
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) ) |
| 362 |
|
elfzle2 |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) → ( 1st ‘ 𝑧 ) ≤ 𝑀 ) |
| 363 |
361 362
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ≤ 𝑀 ) |
| 364 |
356 363
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑢 ) ≤ 𝑀 ) |
| 365 |
|
zre |
⊢ ( 𝑢 ∈ ℤ → 𝑢 ∈ ℝ ) |
| 366 |
365
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ℝ ) |
| 367 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑀 ∈ ℝ ) |
| 368 |
147
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 2 ∈ ℝ ) |
| 369 |
149
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 0 < 2 ) |
| 370 |
366 367 368 369 151
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( ( 2 · 𝑢 ) ≤ 𝑀 ↔ 𝑢 ≤ ( 𝑀 / 2 ) ) ) |
| 371 |
364 370
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ≤ ( 𝑀 / 2 ) ) |
| 372 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑀 / 2 ) ∈ ℝ ) |
| 373 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ℤ ) |
| 374 |
372 373 141
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑢 ≤ ( 𝑀 / 2 ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
| 375 |
371 374
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) |
| 376 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 377 |
|
elfznn |
⊢ ( ( 1st ‘ 𝑧 ) ∈ ( 1 ... 𝑀 ) → ( 1st ‘ 𝑧 ) ∈ ℕ ) |
| 378 |
361 377
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ℕ ) |
| 379 |
356 378
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 𝑢 ) ∈ ℕ ) |
| 380 |
379
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 0 < ( 2 · 𝑢 ) ) |
| 381 |
376 380
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 2 · 0 ) < ( 2 · 𝑢 ) ) |
| 382 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 0 ∈ ℝ ) |
| 383 |
|
ltmul2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 0 < 𝑢 ↔ ( 2 · 0 ) < ( 2 · 𝑢 ) ) ) |
| 384 |
382 366 368 369 383
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 0 < 𝑢 ↔ ( 2 · 0 ) < ( 2 · 𝑢 ) ) ) |
| 385 |
381 384
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 0 < 𝑢 ) |
| 386 |
|
elnnz |
⊢ ( 𝑢 ∈ ℕ ↔ ( 𝑢 ∈ ℤ ∧ 0 < 𝑢 ) ) |
| 387 |
373 385 386
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ℕ ) |
| 388 |
387 279
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ( ℤ≥ ‘ 1 ) ) |
| 389 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ) |
| 390 |
|
elfz5 |
⊢ ( ( 𝑢 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( 𝑀 / 2 ) ) ∈ ℤ ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
| 391 |
388 389 390
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ↔ 𝑢 ≤ ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
| 392 |
375 391
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ) |
| 393 |
392 356
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) |
| 394 |
393
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑢 ∈ ℤ ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) → ( 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ∧ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) ) |
| 395 |
394
|
reximdv2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) → ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) |
| 396 |
355 395
|
impbid2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ) ) |
| 397 |
|
2z |
⊢ 2 ∈ ℤ |
| 398 |
360
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 1st ‘ 𝑧 ) ∈ ℤ ) |
| 399 |
|
divides |
⊢ ( ( 2 ∈ ℤ ∧ ( 1st ‘ 𝑧 ) ∈ ℤ ) → ( 2 ∥ ( 1st ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st ‘ 𝑧 ) ) ) |
| 400 |
397 398 399
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 2 ∥ ( 1st ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℤ ( 𝑢 · 2 ) = ( 1st ‘ 𝑧 ) ) ) |
| 401 |
353 396 400
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) ↔ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
| 402 |
401
|
rabbidva |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ ∃ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } = { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) |
| 403 |
346 402
|
eqtrid |
⊢ ( 𝜑 → ∪ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } = { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) |
| 404 |
403
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) { 𝑧 ∈ 𝑆 ∣ ( 2 · 𝑢 ) = ( 1st ‘ 𝑧 ) } ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) |
| 405 |
326 345 404
|
3eqtr2d |
⊢ ( 𝜑 → Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) = ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) |
| 406 |
405
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |
| 407 |
1 2 3 4 5 6
|
lgsquadlem1 |
⊢ ( 𝜑 → ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |
| 408 |
406 407
|
oveq12d |
⊢ ( 𝜑 → ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) ) |
| 409 |
113 408
|
eqtr4d |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( ( - 1 ↑ Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) · ( - 1 ↑ Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) ) |
| 410 |
|
inrab |
⊢ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∩ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } |
| 411 |
|
pm3.24 |
⊢ ¬ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) |
| 412 |
411
|
a1i |
⊢ ( 𝜑 → ¬ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
| 413 |
412
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ¬ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
| 414 |
|
rabeq0 |
⊢ ( { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } = ∅ ↔ ∀ 𝑧 ∈ 𝑆 ¬ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
| 415 |
413 414
|
sylibr |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∧ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } = ∅ ) |
| 416 |
410 415
|
eqtrid |
⊢ ( 𝜑 → ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∩ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = ∅ ) |
| 417 |
|
hashun |
⊢ ( ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ∧ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ∈ Fin ∧ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∩ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |
| 418 |
110 105 416 417
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) |
| 419 |
|
unrab |
⊢ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } |
| 420 |
|
exmid |
⊢ ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) |
| 421 |
420
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝑆 ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) |
| 422 |
|
rabid2 |
⊢ ( 𝑆 = { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } ↔ ∀ 𝑧 ∈ 𝑆 ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) ) |
| 423 |
421 422
|
mpbir |
⊢ 𝑆 = { 𝑧 ∈ 𝑆 ∣ ( 2 ∥ ( 1st ‘ 𝑧 ) ∨ ¬ 2 ∥ ( 1st ‘ 𝑧 ) ) } |
| 424 |
419 423
|
eqtr4i |
⊢ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) = 𝑆 |
| 425 |
424
|
fveq2i |
⊢ ( ♯ ‘ ( { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ∪ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ♯ ‘ 𝑆 ) |
| 426 |
418 425
|
eqtr3di |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) = ( ♯ ‘ 𝑆 ) ) |
| 427 |
426
|
oveq2d |
⊢ ( 𝜑 → ( - 1 ↑ ( ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ 2 ∥ ( 1st ‘ 𝑧 ) } ) + ( ♯ ‘ { 𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ ( 1st ‘ 𝑧 ) } ) ) ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) |
| 428 |
95 409 427
|
3eqtr2d |
⊢ ( 𝜑 → ( - 1 ↑ ( Σ 𝑢 ∈ ( 1 ... ( ⌊ ‘ ( 𝑀 / 2 ) ) ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) + Σ 𝑢 ∈ ( ( ( ⌊ ‘ ( 𝑀 / 2 ) ) + 1 ) ... 𝑀 ) ( ⌊ ‘ ( ( 𝑄 / 𝑃 ) · ( 2 · 𝑢 ) ) ) ) ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) |
| 429 |
7 80 428
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑄 /L 𝑃 ) = ( - 1 ↑ ( ♯ ‘ 𝑆 ) ) ) |