| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh.q |  |-  Q = ( 0g ` C ) | 
						
							| 2 |  | mapdh.i |  |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) | 
						
							| 3 |  | mapdh.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | mapdh.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 5 |  | mapdh.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 6 |  | mapdh.v |  |-  V = ( Base ` U ) | 
						
							| 7 |  | mapdh.s |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | mapdhc.o |  |-  .0. = ( 0g ` U ) | 
						
							| 9 |  | mapdh.n |  |-  N = ( LSpan ` U ) | 
						
							| 10 |  | mapdh.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 11 |  | mapdh.d |  |-  D = ( Base ` C ) | 
						
							| 12 |  | mapdh.r |  |-  R = ( -g ` C ) | 
						
							| 13 |  | mapdh.j |  |-  J = ( LSpan ` C ) | 
						
							| 14 |  | mapdh.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | mapdhc.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | mapdh.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) | 
						
							| 17 |  | mapdhcl.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | mapdh.p |  |-  .+ = ( +g ` U ) | 
						
							| 19 |  | mapdh.a |  |-  .+b = ( +g ` C ) | 
						
							| 20 |  | mapdh6d.xn |  |-  ( ph -> -. X e. ( N ` { Y , Z } ) ) | 
						
							| 21 |  | mapdh6d.yz |  |-  ( ph -> ( N ` { Y } ) = ( N ` { Z } ) ) | 
						
							| 22 |  | mapdh6d.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 23 |  | mapdh6d.z |  |-  ( ph -> Z e. ( V \ { .0. } ) ) | 
						
							| 24 |  | mapdh6d.w |  |-  ( ph -> w e. ( V \ { .0. } ) ) | 
						
							| 25 |  | mapdh6d.wn |  |-  ( ph -> -. w e. ( N ` { X , Y } ) ) | 
						
							| 26 | 3 5 14 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 27 | 24 | eldifad |  |-  ( ph -> w e. V ) | 
						
							| 28 | 22 | eldifad |  |-  ( ph -> Y e. V ) | 
						
							| 29 | 6 18 | lmodvacl |  |-  ( ( U e. LMod /\ w e. V /\ Y e. V ) -> ( w .+ Y ) e. V ) | 
						
							| 30 | 26 27 28 29 | syl3anc |  |-  ( ph -> ( w .+ Y ) e. V ) | 
						
							| 31 | 3 5 14 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 32 | 17 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 33 | 6 9 31 27 32 28 25 | lspindpi |  |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { Y } ) ) ) | 
						
							| 34 | 33 | simprd |  |-  ( ph -> ( N ` { w } ) =/= ( N ` { Y } ) ) | 
						
							| 35 | 6 18 8 9 26 27 28 34 | lmodindp1 |  |-  ( ph -> ( w .+ Y ) =/= .0. ) | 
						
							| 36 |  | eldifsn |  |-  ( ( w .+ Y ) e. ( V \ { .0. } ) <-> ( ( w .+ Y ) e. V /\ ( w .+ Y ) =/= .0. ) ) | 
						
							| 37 | 30 35 36 | sylanbrc |  |-  ( ph -> ( w .+ Y ) e. ( V \ { .0. } ) ) | 
						
							| 38 | 23 | eldifad |  |-  ( ph -> Z e. V ) | 
						
							| 39 | 6 9 31 32 28 38 20 | lspindpi |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) ) | 
						
							| 40 | 39 | simpld |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 41 | 6 18 8 9 31 17 22 23 24 21 40 25 | mapdindp3 |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { ( w .+ Y ) } ) ) | 
						
							| 42 | 6 18 8 9 31 17 22 23 24 21 40 25 | mapdindp4 |  |-  ( ph -> -. Z e. ( N ` { X , ( w .+ Y ) } ) ) | 
						
							| 43 | 6 8 9 31 17 30 38 41 42 | lspindp1 |  |-  ( ph -> ( ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) /\ -. X e. ( N ` { Z , ( w .+ Y ) } ) ) ) | 
						
							| 44 | 43 | simprd |  |-  ( ph -> -. X e. ( N ` { Z , ( w .+ Y ) } ) ) | 
						
							| 45 |  | prcom |  |-  { ( w .+ Y ) , Z } = { Z , ( w .+ Y ) } | 
						
							| 46 | 45 | fveq2i |  |-  ( N ` { ( w .+ Y ) , Z } ) = ( N ` { Z , ( w .+ Y ) } ) | 
						
							| 47 | 46 | eleq2i |  |-  ( X e. ( N ` { ( w .+ Y ) , Z } ) <-> X e. ( N ` { Z , ( w .+ Y ) } ) ) | 
						
							| 48 | 44 47 | sylnibr |  |-  ( ph -> -. X e. ( N ` { ( w .+ Y ) , Z } ) ) | 
						
							| 49 | 6 9 31 38 32 30 42 | lspindpi |  |-  ( ph -> ( ( N ` { Z } ) =/= ( N ` { X } ) /\ ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) ) ) | 
						
							| 50 | 49 | simprd |  |-  ( ph -> ( N ` { Z } ) =/= ( N ` { ( w .+ Y ) } ) ) | 
						
							| 51 | 50 | necomd |  |-  ( ph -> ( N ` { ( w .+ Y ) } ) =/= ( N ` { Z } ) ) | 
						
							| 52 |  | eqidd |  |-  ( ph -> ( I ` <. X , F , ( w .+ Y ) >. ) = ( I ` <. X , F , ( w .+ Y ) >. ) ) | 
						
							| 53 |  | eqidd |  |-  ( ph -> ( I ` <. X , F , Z >. ) = ( I ` <. X , F , Z >. ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 37 23 48 51 52 53 | mapdh6aN |  |-  ( ph -> ( I ` <. X , F , ( ( w .+ Y ) .+ Z ) >. ) = ( ( I ` <. X , F , ( w .+ Y ) >. ) .+b ( I ` <. X , F , Z >. ) ) ) |