Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
2 |
|
mapdh.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
3 |
|
mapdh.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
mapdh.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdh.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
mapdh.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
7 |
|
mapdh.s |
⊢ − = ( -g ‘ 𝑈 ) |
8 |
|
mapdhc.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
9 |
|
mapdh.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
10 |
|
mapdh.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
mapdh.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
12 |
|
mapdh.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
13 |
|
mapdh.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
14 |
|
mapdh.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdhc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
mapdh.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
17 |
|
mapdhcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
mapdh.p |
⊢ + = ( +g ‘ 𝑈 ) |
19 |
|
mapdh.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
20 |
|
mapdh6d.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
21 |
|
mapdh6d.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) ) |
22 |
|
mapdh6d.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
23 |
|
mapdh6d.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
24 |
|
mapdh6d.w |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
25 |
|
mapdh6d.wn |
⊢ ( 𝜑 → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
26 |
3 5 14
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
27 |
24
|
eldifad |
⊢ ( 𝜑 → 𝑤 ∈ 𝑉 ) |
28 |
22
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
29 |
6 18
|
lmodvacl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑤 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑤 + 𝑌 ) ∈ 𝑉 ) |
30 |
26 27 28 29
|
syl3anc |
⊢ ( 𝜑 → ( 𝑤 + 𝑌 ) ∈ 𝑉 ) |
31 |
3 5 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
32 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
33 |
6 9 31 27 32 28 25
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
34 |
33
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
35 |
6 18 8 9 26 27 28 34
|
lmodindp1 |
⊢ ( 𝜑 → ( 𝑤 + 𝑌 ) ≠ 0 ) |
36 |
|
eldifsn |
⊢ ( ( 𝑤 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑤 + 𝑌 ) ∈ 𝑉 ∧ ( 𝑤 + 𝑌 ) ≠ 0 ) ) |
37 |
30 35 36
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑤 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
38 |
23
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
39 |
6 9 31 32 28 38 20
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
40 |
39
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
41 |
6 18 8 9 31 17 22 23 24 21 40 25
|
mapdindp3 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) |
42 |
6 18 8 9 31 17 22 23 24 21 40 25
|
mapdindp4 |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , ( 𝑤 + 𝑌 ) } ) ) |
43 |
6 8 9 31 17 30 38 41 42
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , ( 𝑤 + 𝑌 ) } ) ) ) |
44 |
43
|
simprd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , ( 𝑤 + 𝑌 ) } ) ) |
45 |
|
prcom |
⊢ { ( 𝑤 + 𝑌 ) , 𝑍 } = { 𝑍 , ( 𝑤 + 𝑌 ) } |
46 |
45
|
fveq2i |
⊢ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) , 𝑍 } ) = ( 𝑁 ‘ { 𝑍 , ( 𝑤 + 𝑌 ) } ) |
47 |
46
|
eleq2i |
⊢ ( 𝑋 ∈ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) , 𝑍 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , ( 𝑤 + 𝑌 ) } ) ) |
48 |
44 47
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) , 𝑍 } ) ) |
49 |
6 9 31 38 32 30 42
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) ) |
50 |
49
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ) |
51 |
50
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑤 + 𝑌 ) } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
52 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑤 + 𝑌 ) 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑤 + 𝑌 ) 〉 ) ) |
53 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 37 23 48 51 52 53
|
mapdh6aN |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( ( 𝑤 + 𝑌 ) + 𝑍 ) 〉 ) = ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , ( 𝑤 + 𝑌 ) 〉 ) ✚ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ) ) |