| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mclsval.d |
|- D = ( mDV ` T ) |
| 2 |
|
mclsval.e |
|- E = ( mEx ` T ) |
| 3 |
|
mclsval.c |
|- C = ( mCls ` T ) |
| 4 |
|
n0i |
|- ( A e. ( K C B ) -> -. ( K C B ) = (/) ) |
| 5 |
|
fvprc |
|- ( -. T e. _V -> ( mCls ` T ) = (/) ) |
| 6 |
3 5
|
eqtrid |
|- ( -. T e. _V -> C = (/) ) |
| 7 |
6
|
oveqd |
|- ( -. T e. _V -> ( K C B ) = ( K (/) B ) ) |
| 8 |
|
0ov |
|- ( K (/) B ) = (/) |
| 9 |
7 8
|
eqtrdi |
|- ( -. T e. _V -> ( K C B ) = (/) ) |
| 10 |
4 9
|
nsyl2 |
|- ( A e. ( K C B ) -> T e. _V ) |
| 11 |
|
fveq2 |
|- ( t = T -> ( mCls ` t ) = ( mCls ` T ) ) |
| 12 |
11 3
|
eqtr4di |
|- ( t = T -> ( mCls ` t ) = C ) |
| 13 |
12
|
oveqd |
|- ( t = T -> ( K ( mCls ` t ) B ) = ( K C B ) ) |
| 14 |
13
|
eleq2d |
|- ( t = T -> ( A e. ( K ( mCls ` t ) B ) <-> A e. ( K C B ) ) ) |
| 15 |
|
fvex |
|- ( mDV ` t ) e. _V |
| 16 |
15
|
elpw2 |
|- ( K e. ~P ( mDV ` t ) <-> K C_ ( mDV ` t ) ) |
| 17 |
|
fveq2 |
|- ( t = T -> ( mDV ` t ) = ( mDV ` T ) ) |
| 18 |
17 1
|
eqtr4di |
|- ( t = T -> ( mDV ` t ) = D ) |
| 19 |
18
|
sseq2d |
|- ( t = T -> ( K C_ ( mDV ` t ) <-> K C_ D ) ) |
| 20 |
16 19
|
bitrid |
|- ( t = T -> ( K e. ~P ( mDV ` t ) <-> K C_ D ) ) |
| 21 |
|
fvex |
|- ( mEx ` t ) e. _V |
| 22 |
21
|
elpw2 |
|- ( B e. ~P ( mEx ` t ) <-> B C_ ( mEx ` t ) ) |
| 23 |
|
fveq2 |
|- ( t = T -> ( mEx ` t ) = ( mEx ` T ) ) |
| 24 |
23 2
|
eqtr4di |
|- ( t = T -> ( mEx ` t ) = E ) |
| 25 |
24
|
sseq2d |
|- ( t = T -> ( B C_ ( mEx ` t ) <-> B C_ E ) ) |
| 26 |
22 25
|
bitrid |
|- ( t = T -> ( B e. ~P ( mEx ` t ) <-> B C_ E ) ) |
| 27 |
20 26
|
anbi12d |
|- ( t = T -> ( ( K e. ~P ( mDV ` t ) /\ B e. ~P ( mEx ` t ) ) <-> ( K C_ D /\ B C_ E ) ) ) |
| 28 |
14 27
|
imbi12d |
|- ( t = T -> ( ( A e. ( K ( mCls ` t ) B ) -> ( K e. ~P ( mDV ` t ) /\ B e. ~P ( mEx ` t ) ) ) <-> ( A e. ( K C B ) -> ( K C_ D /\ B C_ E ) ) ) ) |
| 29 |
|
vex |
|- t e. _V |
| 30 |
15
|
pwex |
|- ~P ( mDV ` t ) e. _V |
| 31 |
21
|
pwex |
|- ~P ( mEx ` t ) e. _V |
| 32 |
30 31
|
mpoex |
|- ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) e. _V |
| 33 |
|
df-mcls |
|- mCls = ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) ) |
| 34 |
33
|
fvmpt2 |
|- ( ( t e. _V /\ ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) e. _V ) -> ( mCls ` t ) = ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) ) |
| 35 |
29 32 34
|
mp2an |
|- ( mCls ` t ) = ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { c | ( ( h u. ran ( mVH ` t ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( ( ( s " ( o u. ran ( mVH ` t ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) ) -> ( s ` p ) e. c ) ) ) } ) |
| 36 |
35
|
elmpocl |
|- ( A e. ( K ( mCls ` t ) B ) -> ( K e. ~P ( mDV ` t ) /\ B e. ~P ( mEx ` t ) ) ) |
| 37 |
28 36
|
vtoclg |
|- ( T e. _V -> ( A e. ( K C B ) -> ( K C_ D /\ B C_ E ) ) ) |
| 38 |
10 37
|
mpcom |
|- ( A e. ( K C B ) -> ( K C_ D /\ B C_ E ) ) |
| 39 |
38
|
simpld |
|- ( A e. ( K C B ) -> K C_ D ) |
| 40 |
38
|
simprd |
|- ( A e. ( K C B ) -> B C_ E ) |
| 41 |
10 39 40
|
3jca |
|- ( A e. ( K C B ) -> ( T e. _V /\ K C_ D /\ B C_ E ) ) |