Metamath Proof Explorer


Theorem mclsrcl

Description: Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D=mDVT
mclsval.e E=mExT
mclsval.c C=mClsT
Assertion mclsrcl AKCBTVKDBE

Proof

Step Hyp Ref Expression
1 mclsval.d D=mDVT
2 mclsval.e E=mExT
3 mclsval.c C=mClsT
4 n0i AKCB¬KCB=
5 fvprc ¬TVmClsT=
6 3 5 eqtrid ¬TVC=
7 6 oveqd ¬TVKCB=KB
8 0ov KB=
9 7 8 eqtrdi ¬TVKCB=
10 4 9 nsyl2 AKCBTV
11 fveq2 t=TmClst=mClsT
12 11 3 eqtr4di t=TmClst=C
13 12 oveqd t=TKmClstB=KCB
14 13 eleq2d t=TAKmClstBAKCB
15 fvex mDVtV
16 15 elpw2 K𝒫mDVtKmDVt
17 fveq2 t=TmDVt=mDVT
18 17 1 eqtr4di t=TmDVt=D
19 18 sseq2d t=TKmDVtKD
20 16 19 bitrid t=TK𝒫mDVtKD
21 fvex mExtV
22 21 elpw2 B𝒫mExtBmExt
23 fveq2 t=TmExt=mExT
24 23 2 eqtr4di t=TmExt=E
25 24 sseq2d t=TBmExtBE
26 22 25 bitrid t=TB𝒫mExtBE
27 20 26 anbi12d t=TK𝒫mDVtB𝒫mExtKDBE
28 14 27 imbi12d t=TAKmClstBK𝒫mDVtB𝒫mExtAKCBKDBE
29 vex tV
30 15 pwex 𝒫mDVtV
31 21 pwex 𝒫mExtV
32 30 31 mpoex d𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspcV
33 df-mcls mCls=tVd𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
34 33 fvmpt2 tVd𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspcVmClst=d𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
35 29 32 34 mp2an mClst=d𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
36 35 elmpocl AKmClstBK𝒫mDVtB𝒫mExt
37 28 36 vtoclg TVAKCBKDBE
38 10 37 mpcom AKCBKDBE
39 38 simpld AKCBKD
40 38 simprd AKCBBE
41 10 39 40 3jca AKCBTVKDBE