Metamath Proof Explorer


Theorem mdexchi

Description: An exchange lemma for modular pairs. Lemma 1.6 of MaedaMaeda p. 2. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdexch.1
|- A e. CH
mdexch.2
|- B e. CH
mdexch.3
|- C e. CH
Assertion mdexchi
|- ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( C vH A ) MH B /\ ( ( C vH A ) i^i B ) = ( A i^i B ) ) )

Proof

Step Hyp Ref Expression
1 mdexch.1
 |-  A e. CH
2 mdexch.2
 |-  B e. CH
3 mdexch.3
 |-  C e. CH
4 chjass
 |-  ( ( C e. CH /\ A e. CH /\ x e. CH ) -> ( ( C vH A ) vH x ) = ( C vH ( A vH x ) ) )
5 3 1 4 mp3an12
 |-  ( x e. CH -> ( ( C vH A ) vH x ) = ( C vH ( A vH x ) ) )
6 3 1 chjcli
 |-  ( C vH A ) e. CH
7 chjcom
 |-  ( ( x e. CH /\ ( C vH A ) e. CH ) -> ( x vH ( C vH A ) ) = ( ( C vH A ) vH x ) )
8 6 7 mpan2
 |-  ( x e. CH -> ( x vH ( C vH A ) ) = ( ( C vH A ) vH x ) )
9 chjcl
 |-  ( ( A e. CH /\ x e. CH ) -> ( A vH x ) e. CH )
10 1 9 mpan
 |-  ( x e. CH -> ( A vH x ) e. CH )
11 chjcom
 |-  ( ( ( A vH x ) e. CH /\ C e. CH ) -> ( ( A vH x ) vH C ) = ( C vH ( A vH x ) ) )
12 10 3 11 sylancl
 |-  ( x e. CH -> ( ( A vH x ) vH C ) = ( C vH ( A vH x ) ) )
13 5 8 12 3eqtr4d
 |-  ( x e. CH -> ( x vH ( C vH A ) ) = ( ( A vH x ) vH C ) )
14 13 ineq1d
 |-  ( x e. CH -> ( ( x vH ( C vH A ) ) i^i B ) = ( ( ( A vH x ) vH C ) i^i B ) )
15 inass
 |-  ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) = ( ( ( A vH x ) vH C ) i^i ( ( A vH B ) i^i B ) )
16 incom
 |-  ( ( A vH B ) i^i B ) = ( B i^i ( A vH B ) )
17 1 2 chjcomi
 |-  ( A vH B ) = ( B vH A )
18 17 ineq2i
 |-  ( B i^i ( A vH B ) ) = ( B i^i ( B vH A ) )
19 2 1 chabs2i
 |-  ( B i^i ( B vH A ) ) = B
20 18 19 eqtri
 |-  ( B i^i ( A vH B ) ) = B
21 16 20 eqtri
 |-  ( ( A vH B ) i^i B ) = B
22 21 ineq2i
 |-  ( ( ( A vH x ) vH C ) i^i ( ( A vH B ) i^i B ) ) = ( ( ( A vH x ) vH C ) i^i B )
23 15 22 eqtri
 |-  ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) = ( ( ( A vH x ) vH C ) i^i B )
24 14 23 eqtr4di
 |-  ( x e. CH -> ( ( x vH ( C vH A ) ) i^i B ) = ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) )
25 24 ad2antrr
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( x vH ( C vH A ) ) i^i B ) = ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) )
26 chlej2
 |-  ( ( ( x e. CH /\ B e. CH /\ A e. CH ) /\ x C_ B ) -> ( A vH x ) C_ ( A vH B ) )
27 26 ex
 |-  ( ( x e. CH /\ B e. CH /\ A e. CH ) -> ( x C_ B -> ( A vH x ) C_ ( A vH B ) ) )
28 2 1 27 mp3an23
 |-  ( x e. CH -> ( x C_ B -> ( A vH x ) C_ ( A vH B ) ) )
29 1 2 chjcli
 |-  ( A vH B ) e. CH
30 mdi
 |-  ( ( ( C e. CH /\ ( A vH B ) e. CH /\ ( A vH x ) e. CH ) /\ ( C MH ( A vH B ) /\ ( A vH x ) C_ ( A vH B ) ) ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) )
31 30 exp32
 |-  ( ( C e. CH /\ ( A vH B ) e. CH /\ ( A vH x ) e. CH ) -> ( C MH ( A vH B ) -> ( ( A vH x ) C_ ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) )
32 3 29 31 mp3an12
 |-  ( ( A vH x ) e. CH -> ( C MH ( A vH B ) -> ( ( A vH x ) C_ ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) )
33 10 32 syl
 |-  ( x e. CH -> ( C MH ( A vH B ) -> ( ( A vH x ) C_ ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) )
34 33 com23
 |-  ( x e. CH -> ( ( A vH x ) C_ ( A vH B ) -> ( C MH ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) )
35 28 34 syld
 |-  ( x e. CH -> ( x C_ B -> ( C MH ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) )
36 35 imp31
 |-  ( ( ( x e. CH /\ x C_ B ) /\ C MH ( A vH B ) ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) )
37 36 adantrr
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) )
38 3 29 chincli
 |-  ( C i^i ( A vH B ) ) e. CH
39 chlej2
 |-  ( ( ( ( C i^i ( A vH B ) ) e. CH /\ A e. CH /\ ( A vH x ) e. CH ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) )
40 39 ex
 |-  ( ( ( C i^i ( A vH B ) ) e. CH /\ A e. CH /\ ( A vH x ) e. CH ) -> ( ( C i^i ( A vH B ) ) C_ A -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) ) )
41 38 1 40 mp3an12
 |-  ( ( A vH x ) e. CH -> ( ( C i^i ( A vH B ) ) C_ A -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) ) )
42 10 41 syl
 |-  ( x e. CH -> ( ( C i^i ( A vH B ) ) C_ A -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) ) )
43 42 imp
 |-  ( ( x e. CH /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) )
44 chjcom
 |-  ( ( ( A vH x ) e. CH /\ A e. CH ) -> ( ( A vH x ) vH A ) = ( A vH ( A vH x ) ) )
45 10 1 44 sylancl
 |-  ( x e. CH -> ( ( A vH x ) vH A ) = ( A vH ( A vH x ) ) )
46 1 chjidmi
 |-  ( A vH A ) = A
47 46 oveq1i
 |-  ( ( A vH A ) vH x ) = ( A vH x )
48 chjass
 |-  ( ( A e. CH /\ A e. CH /\ x e. CH ) -> ( ( A vH A ) vH x ) = ( A vH ( A vH x ) ) )
49 1 1 48 mp3an12
 |-  ( x e. CH -> ( ( A vH A ) vH x ) = ( A vH ( A vH x ) ) )
50 chjcom
 |-  ( ( A e. CH /\ x e. CH ) -> ( A vH x ) = ( x vH A ) )
51 1 50 mpan
 |-  ( x e. CH -> ( A vH x ) = ( x vH A ) )
52 47 49 51 3eqtr3a
 |-  ( x e. CH -> ( A vH ( A vH x ) ) = ( x vH A ) )
53 45 52 eqtrd
 |-  ( x e. CH -> ( ( A vH x ) vH A ) = ( x vH A ) )
54 53 adantr
 |-  ( ( x e. CH /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH x ) vH A ) = ( x vH A ) )
55 43 54 sseqtrd
 |-  ( ( x e. CH /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( x vH A ) )
56 55 ad2ant2rl
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( x vH A ) )
57 37 56 eqsstrd
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) C_ ( x vH A ) )
58 57 ssrind
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) C_ ( ( x vH A ) i^i B ) )
59 25 58 eqsstrd
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( ( x vH A ) i^i B ) )
60 59 adantrl
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) ) -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( ( x vH A ) i^i B ) )
61 mdi
 |-  ( ( ( A e. CH /\ B e. CH /\ x e. CH ) /\ ( A MH B /\ x C_ B ) ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) )
62 61 exp32
 |-  ( ( A e. CH /\ B e. CH /\ x e. CH ) -> ( A MH B -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) )
63 1 2 62 mp3an12
 |-  ( x e. CH -> ( A MH B -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) )
64 63 com23
 |-  ( x e. CH -> ( x C_ B -> ( A MH B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) )
65 64 imp31
 |-  ( ( ( x e. CH /\ x C_ B ) /\ A MH B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) )
66 1 3 chub2i
 |-  A C_ ( C vH A )
67 ssrin
 |-  ( A C_ ( C vH A ) -> ( A i^i B ) C_ ( ( C vH A ) i^i B ) )
68 66 67 ax-mp
 |-  ( A i^i B ) C_ ( ( C vH A ) i^i B )
69 1 2 chincli
 |-  ( A i^i B ) e. CH
70 6 2 chincli
 |-  ( ( C vH A ) i^i B ) e. CH
71 chlej2
 |-  ( ( ( ( A i^i B ) e. CH /\ ( ( C vH A ) i^i B ) e. CH /\ x e. CH ) /\ ( A i^i B ) C_ ( ( C vH A ) i^i B ) ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) )
72 71 ex
 |-  ( ( ( A i^i B ) e. CH /\ ( ( C vH A ) i^i B ) e. CH /\ x e. CH ) -> ( ( A i^i B ) C_ ( ( C vH A ) i^i B ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) )
73 69 70 72 mp3an12
 |-  ( x e. CH -> ( ( A i^i B ) C_ ( ( C vH A ) i^i B ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) )
74 68 73 mpi
 |-  ( x e. CH -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) )
75 74 ad2antrr
 |-  ( ( ( x e. CH /\ x C_ B ) /\ A MH B ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) )
76 65 75 eqsstrd
 |-  ( ( ( x e. CH /\ x C_ B ) /\ A MH B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) )
77 76 adantrr
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) )
78 60 77 sstrd
 |-  ( ( ( x e. CH /\ x C_ B ) /\ ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) ) -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) )
79 78 exp31
 |-  ( x e. CH -> ( x C_ B -> ( ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) )
80 79 com3r
 |-  ( ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( x e. CH -> ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) )
81 80 3impb
 |-  ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( x e. CH -> ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) )
82 81 ralrimiv
 |-  ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> A. x e. CH ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) )
83 mdbr2
 |-  ( ( ( C vH A ) e. CH /\ B e. CH ) -> ( ( C vH A ) MH B <-> A. x e. CH ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) )
84 6 2 83 mp2an
 |-  ( ( C vH A ) MH B <-> A. x e. CH ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) )
85 82 84 sylibr
 |-  ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( C vH A ) MH B )
86 3 1 chjcomi
 |-  ( C vH A ) = ( A vH C )
87 incom
 |-  ( B i^i ( A vH B ) ) = ( ( A vH B ) i^i B )
88 18 87 19 3eqtr3ri
 |-  B = ( ( A vH B ) i^i B )
89 86 88 ineq12i
 |-  ( ( C vH A ) i^i B ) = ( ( A vH C ) i^i ( ( A vH B ) i^i B ) )
90 inass
 |-  ( ( ( A vH C ) i^i ( A vH B ) ) i^i B ) = ( ( A vH C ) i^i ( ( A vH B ) i^i B ) )
91 1 2 chub1i
 |-  A C_ ( A vH B )
92 mdi
 |-  ( ( ( C e. CH /\ ( A vH B ) e. CH /\ A e. CH ) /\ ( C MH ( A vH B ) /\ A C_ ( A vH B ) ) ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) )
93 92 exp32
 |-  ( ( C e. CH /\ ( A vH B ) e. CH /\ A e. CH ) -> ( C MH ( A vH B ) -> ( A C_ ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) ) )
94 3 29 1 93 mp3an
 |-  ( C MH ( A vH B ) -> ( A C_ ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) )
95 91 94 mpi
 |-  ( C MH ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) )
96 1 38 chjcomi
 |-  ( A vH ( C i^i ( A vH B ) ) ) = ( ( C i^i ( A vH B ) ) vH A )
97 38 1 chlejb1i
 |-  ( ( C i^i ( A vH B ) ) C_ A <-> ( ( C i^i ( A vH B ) ) vH A ) = A )
98 97 biimpi
 |-  ( ( C i^i ( A vH B ) ) C_ A -> ( ( C i^i ( A vH B ) ) vH A ) = A )
99 96 98 eqtrid
 |-  ( ( C i^i ( A vH B ) ) C_ A -> ( A vH ( C i^i ( A vH B ) ) ) = A )
100 95 99 sylan9eq
 |-  ( ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH C ) i^i ( A vH B ) ) = A )
101 100 ineq1d
 |-  ( ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( ( A vH C ) i^i ( A vH B ) ) i^i B ) = ( A i^i B ) )
102 90 101 eqtr3id
 |-  ( ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH C ) i^i ( ( A vH B ) i^i B ) ) = ( A i^i B ) )
103 89 102 eqtrid
 |-  ( ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( C vH A ) i^i B ) = ( A i^i B ) )
104 103 3adant1
 |-  ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( C vH A ) i^i B ) = ( A i^i B ) )
105 85 104 jca
 |-  ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( C vH A ) MH B /\ ( ( C vH A ) i^i B ) = ( A i^i B ) ) )