Step |
Hyp |
Ref |
Expression |
1 |
|
mdexch.1 |
|- A e. CH |
2 |
|
mdexch.2 |
|- B e. CH |
3 |
|
mdexch.3 |
|- C e. CH |
4 |
|
chjass |
|- ( ( C e. CH /\ A e. CH /\ x e. CH ) -> ( ( C vH A ) vH x ) = ( C vH ( A vH x ) ) ) |
5 |
3 1 4
|
mp3an12 |
|- ( x e. CH -> ( ( C vH A ) vH x ) = ( C vH ( A vH x ) ) ) |
6 |
3 1
|
chjcli |
|- ( C vH A ) e. CH |
7 |
|
chjcom |
|- ( ( x e. CH /\ ( C vH A ) e. CH ) -> ( x vH ( C vH A ) ) = ( ( C vH A ) vH x ) ) |
8 |
6 7
|
mpan2 |
|- ( x e. CH -> ( x vH ( C vH A ) ) = ( ( C vH A ) vH x ) ) |
9 |
|
chjcl |
|- ( ( A e. CH /\ x e. CH ) -> ( A vH x ) e. CH ) |
10 |
1 9
|
mpan |
|- ( x e. CH -> ( A vH x ) e. CH ) |
11 |
|
chjcom |
|- ( ( ( A vH x ) e. CH /\ C e. CH ) -> ( ( A vH x ) vH C ) = ( C vH ( A vH x ) ) ) |
12 |
10 3 11
|
sylancl |
|- ( x e. CH -> ( ( A vH x ) vH C ) = ( C vH ( A vH x ) ) ) |
13 |
5 8 12
|
3eqtr4d |
|- ( x e. CH -> ( x vH ( C vH A ) ) = ( ( A vH x ) vH C ) ) |
14 |
13
|
ineq1d |
|- ( x e. CH -> ( ( x vH ( C vH A ) ) i^i B ) = ( ( ( A vH x ) vH C ) i^i B ) ) |
15 |
|
inass |
|- ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) = ( ( ( A vH x ) vH C ) i^i ( ( A vH B ) i^i B ) ) |
16 |
|
incom |
|- ( ( A vH B ) i^i B ) = ( B i^i ( A vH B ) ) |
17 |
1 2
|
chjcomi |
|- ( A vH B ) = ( B vH A ) |
18 |
17
|
ineq2i |
|- ( B i^i ( A vH B ) ) = ( B i^i ( B vH A ) ) |
19 |
2 1
|
chabs2i |
|- ( B i^i ( B vH A ) ) = B |
20 |
18 19
|
eqtri |
|- ( B i^i ( A vH B ) ) = B |
21 |
16 20
|
eqtri |
|- ( ( A vH B ) i^i B ) = B |
22 |
21
|
ineq2i |
|- ( ( ( A vH x ) vH C ) i^i ( ( A vH B ) i^i B ) ) = ( ( ( A vH x ) vH C ) i^i B ) |
23 |
15 22
|
eqtri |
|- ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) = ( ( ( A vH x ) vH C ) i^i B ) |
24 |
14 23
|
eqtr4di |
|- ( x e. CH -> ( ( x vH ( C vH A ) ) i^i B ) = ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) ) |
25 |
24
|
ad2antrr |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( x vH ( C vH A ) ) i^i B ) = ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) ) |
26 |
|
chlej2 |
|- ( ( ( x e. CH /\ B e. CH /\ A e. CH ) /\ x C_ B ) -> ( A vH x ) C_ ( A vH B ) ) |
27 |
26
|
ex |
|- ( ( x e. CH /\ B e. CH /\ A e. CH ) -> ( x C_ B -> ( A vH x ) C_ ( A vH B ) ) ) |
28 |
2 1 27
|
mp3an23 |
|- ( x e. CH -> ( x C_ B -> ( A vH x ) C_ ( A vH B ) ) ) |
29 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
30 |
|
mdi |
|- ( ( ( C e. CH /\ ( A vH B ) e. CH /\ ( A vH x ) e. CH ) /\ ( C MH ( A vH B ) /\ ( A vH x ) C_ ( A vH B ) ) ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) |
31 |
30
|
exp32 |
|- ( ( C e. CH /\ ( A vH B ) e. CH /\ ( A vH x ) e. CH ) -> ( C MH ( A vH B ) -> ( ( A vH x ) C_ ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) ) |
32 |
3 29 31
|
mp3an12 |
|- ( ( A vH x ) e. CH -> ( C MH ( A vH B ) -> ( ( A vH x ) C_ ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) ) |
33 |
10 32
|
syl |
|- ( x e. CH -> ( C MH ( A vH B ) -> ( ( A vH x ) C_ ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) ) |
34 |
33
|
com23 |
|- ( x e. CH -> ( ( A vH x ) C_ ( A vH B ) -> ( C MH ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) ) |
35 |
28 34
|
syld |
|- ( x e. CH -> ( x C_ B -> ( C MH ( A vH B ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) ) ) |
36 |
35
|
imp31 |
|- ( ( ( x e. CH /\ x C_ B ) /\ C MH ( A vH B ) ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) |
37 |
36
|
adantrr |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) = ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) ) |
38 |
3 29
|
chincli |
|- ( C i^i ( A vH B ) ) e. CH |
39 |
|
chlej2 |
|- ( ( ( ( C i^i ( A vH B ) ) e. CH /\ A e. CH /\ ( A vH x ) e. CH ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) ) |
40 |
39
|
ex |
|- ( ( ( C i^i ( A vH B ) ) e. CH /\ A e. CH /\ ( A vH x ) e. CH ) -> ( ( C i^i ( A vH B ) ) C_ A -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) ) ) |
41 |
38 1 40
|
mp3an12 |
|- ( ( A vH x ) e. CH -> ( ( C i^i ( A vH B ) ) C_ A -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) ) ) |
42 |
10 41
|
syl |
|- ( x e. CH -> ( ( C i^i ( A vH B ) ) C_ A -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) ) ) |
43 |
42
|
imp |
|- ( ( x e. CH /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( ( A vH x ) vH A ) ) |
44 |
|
chjcom |
|- ( ( ( A vH x ) e. CH /\ A e. CH ) -> ( ( A vH x ) vH A ) = ( A vH ( A vH x ) ) ) |
45 |
10 1 44
|
sylancl |
|- ( x e. CH -> ( ( A vH x ) vH A ) = ( A vH ( A vH x ) ) ) |
46 |
1
|
chjidmi |
|- ( A vH A ) = A |
47 |
46
|
oveq1i |
|- ( ( A vH A ) vH x ) = ( A vH x ) |
48 |
|
chjass |
|- ( ( A e. CH /\ A e. CH /\ x e. CH ) -> ( ( A vH A ) vH x ) = ( A vH ( A vH x ) ) ) |
49 |
1 1 48
|
mp3an12 |
|- ( x e. CH -> ( ( A vH A ) vH x ) = ( A vH ( A vH x ) ) ) |
50 |
|
chjcom |
|- ( ( A e. CH /\ x e. CH ) -> ( A vH x ) = ( x vH A ) ) |
51 |
1 50
|
mpan |
|- ( x e. CH -> ( A vH x ) = ( x vH A ) ) |
52 |
47 49 51
|
3eqtr3a |
|- ( x e. CH -> ( A vH ( A vH x ) ) = ( x vH A ) ) |
53 |
45 52
|
eqtrd |
|- ( x e. CH -> ( ( A vH x ) vH A ) = ( x vH A ) ) |
54 |
53
|
adantr |
|- ( ( x e. CH /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH x ) vH A ) = ( x vH A ) ) |
55 |
43 54
|
sseqtrd |
|- ( ( x e. CH /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( x vH A ) ) |
56 |
55
|
ad2ant2rl |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( A vH x ) vH ( C i^i ( A vH B ) ) ) C_ ( x vH A ) ) |
57 |
37 56
|
eqsstrd |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) C_ ( x vH A ) ) |
58 |
57
|
ssrind |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( ( ( A vH x ) vH C ) i^i ( A vH B ) ) i^i B ) C_ ( ( x vH A ) i^i B ) ) |
59 |
25 58
|
eqsstrd |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( ( x vH A ) i^i B ) ) |
60 |
59
|
adantrl |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) ) -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( ( x vH A ) i^i B ) ) |
61 |
|
mdi |
|- ( ( ( A e. CH /\ B e. CH /\ x e. CH ) /\ ( A MH B /\ x C_ B ) ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) |
62 |
61
|
exp32 |
|- ( ( A e. CH /\ B e. CH /\ x e. CH ) -> ( A MH B -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
63 |
1 2 62
|
mp3an12 |
|- ( x e. CH -> ( A MH B -> ( x C_ B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
64 |
63
|
com23 |
|- ( x e. CH -> ( x C_ B -> ( A MH B -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) ) ) |
65 |
64
|
imp31 |
|- ( ( ( x e. CH /\ x C_ B ) /\ A MH B ) -> ( ( x vH A ) i^i B ) = ( x vH ( A i^i B ) ) ) |
66 |
1 3
|
chub2i |
|- A C_ ( C vH A ) |
67 |
|
ssrin |
|- ( A C_ ( C vH A ) -> ( A i^i B ) C_ ( ( C vH A ) i^i B ) ) |
68 |
66 67
|
ax-mp |
|- ( A i^i B ) C_ ( ( C vH A ) i^i B ) |
69 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
70 |
6 2
|
chincli |
|- ( ( C vH A ) i^i B ) e. CH |
71 |
|
chlej2 |
|- ( ( ( ( A i^i B ) e. CH /\ ( ( C vH A ) i^i B ) e. CH /\ x e. CH ) /\ ( A i^i B ) C_ ( ( C vH A ) i^i B ) ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) |
72 |
71
|
ex |
|- ( ( ( A i^i B ) e. CH /\ ( ( C vH A ) i^i B ) e. CH /\ x e. CH ) -> ( ( A i^i B ) C_ ( ( C vH A ) i^i B ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) |
73 |
69 70 72
|
mp3an12 |
|- ( x e. CH -> ( ( A i^i B ) C_ ( ( C vH A ) i^i B ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) |
74 |
68 73
|
mpi |
|- ( x e. CH -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) |
75 |
74
|
ad2antrr |
|- ( ( ( x e. CH /\ x C_ B ) /\ A MH B ) -> ( x vH ( A i^i B ) ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) |
76 |
65 75
|
eqsstrd |
|- ( ( ( x e. CH /\ x C_ B ) /\ A MH B ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) |
77 |
76
|
adantrr |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) ) -> ( ( x vH A ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) |
78 |
60 77
|
sstrd |
|- ( ( ( x e. CH /\ x C_ B ) /\ ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) ) -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) |
79 |
78
|
exp31 |
|- ( x e. CH -> ( x C_ B -> ( ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) ) |
80 |
79
|
com3r |
|- ( ( A MH B /\ ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) ) -> ( x e. CH -> ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) ) |
81 |
80
|
3impb |
|- ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( x e. CH -> ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) ) |
82 |
81
|
ralrimiv |
|- ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> A. x e. CH ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) |
83 |
|
mdbr2 |
|- ( ( ( C vH A ) e. CH /\ B e. CH ) -> ( ( C vH A ) MH B <-> A. x e. CH ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) ) |
84 |
6 2 83
|
mp2an |
|- ( ( C vH A ) MH B <-> A. x e. CH ( x C_ B -> ( ( x vH ( C vH A ) ) i^i B ) C_ ( x vH ( ( C vH A ) i^i B ) ) ) ) |
85 |
82 84
|
sylibr |
|- ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( C vH A ) MH B ) |
86 |
3 1
|
chjcomi |
|- ( C vH A ) = ( A vH C ) |
87 |
|
incom |
|- ( B i^i ( A vH B ) ) = ( ( A vH B ) i^i B ) |
88 |
18 87 19
|
3eqtr3ri |
|- B = ( ( A vH B ) i^i B ) |
89 |
86 88
|
ineq12i |
|- ( ( C vH A ) i^i B ) = ( ( A vH C ) i^i ( ( A vH B ) i^i B ) ) |
90 |
|
inass |
|- ( ( ( A vH C ) i^i ( A vH B ) ) i^i B ) = ( ( A vH C ) i^i ( ( A vH B ) i^i B ) ) |
91 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
92 |
|
mdi |
|- ( ( ( C e. CH /\ ( A vH B ) e. CH /\ A e. CH ) /\ ( C MH ( A vH B ) /\ A C_ ( A vH B ) ) ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) |
93 |
92
|
exp32 |
|- ( ( C e. CH /\ ( A vH B ) e. CH /\ A e. CH ) -> ( C MH ( A vH B ) -> ( A C_ ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) ) ) |
94 |
3 29 1 93
|
mp3an |
|- ( C MH ( A vH B ) -> ( A C_ ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) ) |
95 |
91 94
|
mpi |
|- ( C MH ( A vH B ) -> ( ( A vH C ) i^i ( A vH B ) ) = ( A vH ( C i^i ( A vH B ) ) ) ) |
96 |
1 38
|
chjcomi |
|- ( A vH ( C i^i ( A vH B ) ) ) = ( ( C i^i ( A vH B ) ) vH A ) |
97 |
38 1
|
chlejb1i |
|- ( ( C i^i ( A vH B ) ) C_ A <-> ( ( C i^i ( A vH B ) ) vH A ) = A ) |
98 |
97
|
biimpi |
|- ( ( C i^i ( A vH B ) ) C_ A -> ( ( C i^i ( A vH B ) ) vH A ) = A ) |
99 |
96 98
|
eqtrid |
|- ( ( C i^i ( A vH B ) ) C_ A -> ( A vH ( C i^i ( A vH B ) ) ) = A ) |
100 |
95 99
|
sylan9eq |
|- ( ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH C ) i^i ( A vH B ) ) = A ) |
101 |
100
|
ineq1d |
|- ( ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( ( A vH C ) i^i ( A vH B ) ) i^i B ) = ( A i^i B ) ) |
102 |
90 101
|
eqtr3id |
|- ( ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( A vH C ) i^i ( ( A vH B ) i^i B ) ) = ( A i^i B ) ) |
103 |
89 102
|
eqtrid |
|- ( ( C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( C vH A ) i^i B ) = ( A i^i B ) ) |
104 |
103
|
3adant1 |
|- ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( C vH A ) i^i B ) = ( A i^i B ) ) |
105 |
85 104
|
jca |
|- ( ( A MH B /\ C MH ( A vH B ) /\ ( C i^i ( A vH B ) ) C_ A ) -> ( ( C vH A ) MH B /\ ( ( C vH A ) i^i B ) = ( A i^i B ) ) ) |