| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpomatmul.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mpomatmul.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | mpomatmul.m |  |-  .X. = ( .r ` A ) | 
						
							| 4 |  | mpomatmul.t |  |-  .x. = ( .r ` R ) | 
						
							| 5 |  | mpomatmul.r |  |-  ( ph -> R e. V ) | 
						
							| 6 |  | mpomatmul.n |  |-  ( ph -> N e. Fin ) | 
						
							| 7 |  | mpomatmul.x |  |-  X = ( i e. N , j e. N |-> C ) | 
						
							| 8 |  | mpomatmul.y |  |-  Y = ( i e. N , j e. N |-> E ) | 
						
							| 9 |  | mpomatmul.c |  |-  ( ( ph /\ i e. N /\ j e. N ) -> C e. B ) | 
						
							| 10 |  | mpomatmul.e |  |-  ( ( ph /\ i e. N /\ j e. N ) -> E e. B ) | 
						
							| 11 |  | mpomatmul.d |  |-  ( ( ph /\ ( k = i /\ m = j ) ) -> D = C ) | 
						
							| 12 |  | mpomatmul.f |  |-  ( ( ph /\ ( m = i /\ l = j ) ) -> F = E ) | 
						
							| 13 |  | mpomatmul.1 |  |-  ( ( ph /\ k e. N /\ m e. N ) -> D e. U ) | 
						
							| 14 |  | mpomatmul.2 |  |-  ( ( ph /\ m e. N /\ l e. N ) -> F e. W ) | 
						
							| 15 |  | eqid |  |-  ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) | 
						
							| 16 | 1 15 | matmulr |  |-  ( ( N e. Fin /\ R e. V ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) | 
						
							| 17 | 16 3 | eqtr4di |  |-  ( ( N e. Fin /\ R e. V ) -> ( R maMul <. N , N , N >. ) = .X. ) | 
						
							| 18 | 17 | oveqd |  |-  ( ( N e. Fin /\ R e. V ) -> ( X ( R maMul <. N , N , N >. ) Y ) = ( X .X. Y ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( N e. Fin /\ R e. V ) -> ( X .X. Y ) = ( X ( R maMul <. N , N , N >. ) Y ) ) | 
						
							| 20 | 6 5 19 | syl2anc |  |-  ( ph -> ( X .X. Y ) = ( X ( R maMul <. N , N , N >. ) Y ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 22 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 23 | 9 2 | eleqtrdi |  |-  ( ( ph /\ i e. N /\ j e. N ) -> C e. ( Base ` R ) ) | 
						
							| 24 | 1 21 22 6 5 23 | matbas2d |  |-  ( ph -> ( i e. N , j e. N |-> C ) e. ( Base ` A ) ) | 
						
							| 25 | 7 24 | eqeltrid |  |-  ( ph -> X e. ( Base ` A ) ) | 
						
							| 26 | 1 21 | matbas2 |  |-  ( ( N e. Fin /\ R e. V ) -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) | 
						
							| 27 | 6 5 26 | syl2anc |  |-  ( ph -> ( ( Base ` R ) ^m ( N X. N ) ) = ( Base ` A ) ) | 
						
							| 28 | 25 27 | eleqtrrd |  |-  ( ph -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 29 | 10 2 | eleqtrdi |  |-  ( ( ph /\ i e. N /\ j e. N ) -> E e. ( Base ` R ) ) | 
						
							| 30 | 1 21 22 6 5 29 | matbas2d |  |-  ( ph -> ( i e. N , j e. N |-> E ) e. ( Base ` A ) ) | 
						
							| 31 | 8 30 | eqeltrid |  |-  ( ph -> Y e. ( Base ` A ) ) | 
						
							| 32 | 31 27 | eleqtrrd |  |-  ( ph -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) | 
						
							| 33 | 15 21 4 5 6 6 6 28 32 | mamuval |  |-  ( ph -> ( X ( R maMul <. N , N , N >. ) Y ) = ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( ( k X m ) .x. ( m Y l ) ) ) ) ) ) | 
						
							| 34 | 7 | a1i |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> X = ( i e. N , j e. N |-> C ) ) | 
						
							| 35 |  | equcom |  |-  ( i = k <-> k = i ) | 
						
							| 36 |  | equcom |  |-  ( j = m <-> m = j ) | 
						
							| 37 | 35 36 | anbi12i |  |-  ( ( i = k /\ j = m ) <-> ( k = i /\ m = j ) ) | 
						
							| 38 | 37 11 | sylan2b |  |-  ( ( ph /\ ( i = k /\ j = m ) ) -> D = C ) | 
						
							| 39 | 38 | eqcomd |  |-  ( ( ph /\ ( i = k /\ j = m ) ) -> C = D ) | 
						
							| 40 | 39 | ex |  |-  ( ph -> ( ( i = k /\ j = m ) -> C = D ) ) | 
						
							| 41 | 40 | 3ad2ant1 |  |-  ( ( ph /\ k e. N /\ l e. N ) -> ( ( i = k /\ j = m ) -> C = D ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( i = k /\ j = m ) -> C = D ) ) | 
						
							| 43 | 42 | imp |  |-  ( ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) /\ ( i = k /\ j = m ) ) -> C = D ) | 
						
							| 44 |  | simpl2 |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> k e. N ) | 
						
							| 45 |  | simpr |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> m e. N ) | 
						
							| 46 |  | simpl1 |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ph ) | 
						
							| 47 | 46 44 45 13 | syl3anc |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> D e. U ) | 
						
							| 48 | 34 43 44 45 47 | ovmpod |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( k X m ) = D ) | 
						
							| 49 | 8 | a1i |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> Y = ( i e. N , j e. N |-> E ) ) | 
						
							| 50 |  | equcomi |  |-  ( i = m -> m = i ) | 
						
							| 51 |  | equcomi |  |-  ( j = l -> l = j ) | 
						
							| 52 | 50 51 | anim12i |  |-  ( ( i = m /\ j = l ) -> ( m = i /\ l = j ) ) | 
						
							| 53 | 52 12 | sylan2 |  |-  ( ( ph /\ ( i = m /\ j = l ) ) -> F = E ) | 
						
							| 54 | 53 | ex |  |-  ( ph -> ( ( i = m /\ j = l ) -> F = E ) ) | 
						
							| 55 | 54 | 3ad2ant1 |  |-  ( ( ph /\ k e. N /\ l e. N ) -> ( ( i = m /\ j = l ) -> F = E ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( i = m /\ j = l ) -> F = E ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) /\ ( i = m /\ j = l ) ) -> F = E ) | 
						
							| 58 | 57 | eqcomd |  |-  ( ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) /\ ( i = m /\ j = l ) ) -> E = F ) | 
						
							| 59 |  | simpl3 |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> l e. N ) | 
						
							| 60 | 46 45 59 14 | syl3anc |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> F e. W ) | 
						
							| 61 | 49 58 45 59 60 | ovmpod |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( m Y l ) = F ) | 
						
							| 62 | 48 61 | oveq12d |  |-  ( ( ( ph /\ k e. N /\ l e. N ) /\ m e. N ) -> ( ( k X m ) .x. ( m Y l ) ) = ( D .x. F ) ) | 
						
							| 63 | 62 | mpteq2dva |  |-  ( ( ph /\ k e. N /\ l e. N ) -> ( m e. N |-> ( ( k X m ) .x. ( m Y l ) ) ) = ( m e. N |-> ( D .x. F ) ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( ( ph /\ k e. N /\ l e. N ) -> ( R gsum ( m e. N |-> ( ( k X m ) .x. ( m Y l ) ) ) ) = ( R gsum ( m e. N |-> ( D .x. F ) ) ) ) | 
						
							| 65 | 64 | mpoeq3dva |  |-  ( ph -> ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( ( k X m ) .x. ( m Y l ) ) ) ) ) = ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( D .x. F ) ) ) ) ) | 
						
							| 66 | 20 33 65 | 3eqtrd |  |-  ( ph -> ( X .X. Y ) = ( k e. N , l e. N |-> ( R gsum ( m e. N |-> ( D .x. F ) ) ) ) ) |