| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpomatmul.a |
|
| 2 |
|
mpomatmul.b |
|
| 3 |
|
mpomatmul.m |
|
| 4 |
|
mpomatmul.t |
|
| 5 |
|
mpomatmul.r |
|
| 6 |
|
mpomatmul.n |
|
| 7 |
|
mpomatmul.x |
|
| 8 |
|
mpomatmul.y |
|
| 9 |
|
mpomatmul.c |
|
| 10 |
|
mpomatmul.e |
|
| 11 |
|
mpomatmul.d |
|
| 12 |
|
mpomatmul.f |
|
| 13 |
|
mpomatmul.1 |
|
| 14 |
|
mpomatmul.2 |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
matmulr |
|
| 17 |
16 3
|
eqtr4di |
|
| 18 |
17
|
oveqd |
|
| 19 |
18
|
eqcomd |
|
| 20 |
6 5 19
|
syl2anc |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
9 2
|
eleqtrdi |
|
| 24 |
1 21 22 6 5 23
|
matbas2d |
|
| 25 |
7 24
|
eqeltrid |
|
| 26 |
1 21
|
matbas2 |
|
| 27 |
6 5 26
|
syl2anc |
|
| 28 |
25 27
|
eleqtrrd |
|
| 29 |
10 2
|
eleqtrdi |
|
| 30 |
1 21 22 6 5 29
|
matbas2d |
|
| 31 |
8 30
|
eqeltrid |
|
| 32 |
31 27
|
eleqtrrd |
|
| 33 |
15 21 4 5 6 6 6 28 32
|
mamuval |
|
| 34 |
7
|
a1i |
|
| 35 |
|
equcom |
|
| 36 |
|
equcom |
|
| 37 |
35 36
|
anbi12i |
|
| 38 |
37 11
|
sylan2b |
|
| 39 |
38
|
eqcomd |
|
| 40 |
39
|
ex |
|
| 41 |
40
|
3ad2ant1 |
|
| 42 |
41
|
adantr |
|
| 43 |
42
|
imp |
|
| 44 |
|
simpl2 |
|
| 45 |
|
simpr |
|
| 46 |
|
simpl1 |
|
| 47 |
46 44 45 13
|
syl3anc |
|
| 48 |
34 43 44 45 47
|
ovmpod |
|
| 49 |
8
|
a1i |
|
| 50 |
|
equcomi |
|
| 51 |
|
equcomi |
|
| 52 |
50 51
|
anim12i |
|
| 53 |
52 12
|
sylan2 |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
3ad2ant1 |
|
| 56 |
55
|
adantr |
|
| 57 |
56
|
imp |
|
| 58 |
57
|
eqcomd |
|
| 59 |
|
simpl3 |
|
| 60 |
46 45 59 14
|
syl3anc |
|
| 61 |
49 58 45 59 60
|
ovmpod |
|
| 62 |
48 61
|
oveq12d |
|
| 63 |
62
|
mpteq2dva |
|
| 64 |
63
|
oveq2d |
|
| 65 |
64
|
mpoeq3dva |
|
| 66 |
20 33 65
|
3eqtrd |
|